Imports#

from datetime import datetime
import pandas as pd

from diive.core.io.files import load_parquet, save_parquet
from diive.pkgs.gapfilling.xgboost_ts import XGBoostTS

Load data#

df = load_parquet(filepath="17.1_CH-CHA_meteo10_2005-2024.parquet")
df
Loaded .parquet file 17.1_CH-CHA_meteo10_2005-2024.parquet (0.048 seconds).
    --> Detected time resolution of <30 * Minutes> / 30min 
LW_IN_T1_2_1 PA_GF1_0.9_1 FLAG_PA_GF1_0.9_1_ISFILLED PPFD_IN_T1_2_2 FLAG_PPFD_IN_T1_2_2_ISFILLED VPD_T1_2_1 ... SWC_GF1_0.75_1 TS_GF1_0.04_1 TS_GF1_0.15_1 TS_GF1_0.4_1 FLAG_PREC_RAIN_TOT_GF1_0.5_1_FLUXNET_ISFILLED TIMESINCE_PREC_RAIN_TOT_GF1_0.5_1
TIMESTAMP_MIDDLE
2005-01-01 00:15:00 NaN 978.100000 1.0 0.0 0 0.099893 ... NaN NaN NaN NaN NaN 1
2005-01-01 00:45:00 NaN 977.933333 1.0 0.0 0 0.097606 ... NaN NaN NaN NaN NaN 2
2005-01-01 01:15:00 NaN 977.900000 1.0 0.0 0 0.091683 ... NaN NaN NaN NaN NaN 0
2005-01-01 01:45:00 NaN 977.833333 1.0 0.0 0 0.071157 ... NaN NaN NaN NaN NaN 1
2005-01-01 02:15:00 NaN 977.833333 1.0 0.0 0 0.058333 ... NaN NaN NaN NaN NaN 0
... ... ... ... ... ... ... ... ... ... ... ... ... ...
2024-12-31 21:45:00 304.613900 983.370890 NaN 0.0 0 0.000011 ... 45.120877 3.474346 4.437078 5.528727 NaN 380
2024-12-31 22:15:00 303.039890 983.052160 NaN 0.0 0 0.000011 ... 45.144937 3.428224 4.440415 5.521962 NaN 381
2024-12-31 22:45:00 302.093633 982.851140 NaN 0.0 0 0.000011 ... 45.152280 3.384733 4.443751 5.523991 NaN 382
2024-12-31 23:15:00 302.217307 982.896827 NaN 0.0 0 0.000010 ... 45.095043 3.349179 4.439747 5.528050 NaN 383
2024-12-31 23:45:00 298.392973 982.856613 NaN 0.0 0 0.000010 ... 45.278093 3.316919 4.442417 5.523991 NaN 384

350640 rows × 23 columns

Gap-filling TS#

[print(c) for c in df if "TS_" in c];
TS_GF1_0.04_1
TS_GF1_0.15_1
TS_GF1_0.4_1

Fill TS_GF1_0.04_1#

TARGET_COL = 'TS_GF1_0.04_1'
TARGET_GAPFILLED_COL = f'{TARGET_COL}_gfXG'
FLAG_GAPFILLED_COL = f'FLAG_{TARGET_GAPFILLED_COL}_ISFILLED'

# Dataframe for gap-filling
_df = pd.DataFrame()
_df[TARGET_COL] = df[TARGET_COL].copy()
_df['TA_T1_2_1'] = df['TA_T1_2_1'].copy()

# XGBoost
xgb = XGBoostTS(
    input_df=_df,
    target_col=TARGET_COL,
    features_lag=[-5, -1],
    features_lag_exclude_cols=None,
    perm_n_repeats=10,
    include_timestamp_as_features=True,
    add_continuous_record_number=True,
    n_estimators=1000,
    random_state=42,
    early_stopping_rounds=50,
    n_jobs=-1
)
xgb.trainmodel(showplot_scores=False, showplot_importance=False)
xgb.report_traintest()
xgb.fillgaps(showplot_scores=False, showplot_importance=False)
xgb.report_gapfilling()
results = xgb.gapfilling_df_

# Add results to main data
df = pd.concat([df, results[[TARGET_GAPFILLED_COL, FLAG_GAPFILLED_COL]]], axis=1)

# Plot
plotdf = df[[TARGET_COL, TARGET_GAPFILLED_COL, FLAG_GAPFILLED_COL]].copy()
plotdf.plot(x_compat=True, title=TARGET_COL, subplots=True, figsize=(20, 6));
locs = (plotdf.index.year == 2011) & (plotdf.index.month == 8)
plotdf[locs].plot(x_compat=True, title=TARGET_COL, subplots=True, figsize=(20, 6));
Adding new data columns ...
++ Added new columns with timestamp info: ['.YEAR', '.SEASON', '.MONTH', '.WEEK', '.DOY', '.HOUR', '.YEARMONTH', '.YEARDOY', '.YEARWEEK'] 
++ Added new column .RECORDNUMBER with record numbers from 1 to 350640.

Training final model ...
>>> Training model <class 'xgboost.sklearn.XGBRegressor'> based on data between 2005-09-09 10:15:00 and 2024-12-31 23:15:00 ...
>>> Fitting model to training data ...
[0]	validation_0-rmse:4.77951	validation_1-rmse:4.77196
[1]	validation_0-rmse:3.50458	validation_1-rmse:3.49880
[2]	validation_0-rmse:2.64362	validation_1-rmse:2.64112
[3]	validation_0-rmse:2.07531	validation_1-rmse:2.07526
[4]	validation_0-rmse:1.70842	validation_1-rmse:1.71063
[5]	validation_0-rmse:1.47499	validation_1-rmse:1.47882
[6]	validation_0-rmse:1.33445	validation_1-rmse:1.33946
[7]	validation_0-rmse:1.22991	validation_1-rmse:1.23687
[8]	validation_0-rmse:1.16118	validation_1-rmse:1.16975
[9]	validation_0-rmse:1.11181	validation_1-rmse:1.12216
[10]	validation_0-rmse:1.07220	validation_1-rmse:1.08290
[11]	validation_0-rmse:1.04681	validation_1-rmse:1.05823
[12]	validation_0-rmse:1.01730	validation_1-rmse:1.02939
[13]	validation_0-rmse:0.99110	validation_1-rmse:1.00399
[14]	validation_0-rmse:0.96122	validation_1-rmse:0.97487
[15]	validation_0-rmse:0.95195	validation_1-rmse:0.96584
[16]	validation_0-rmse:0.93773	validation_1-rmse:0.95178
[17]	validation_0-rmse:0.92262	validation_1-rmse:0.93705
[18]	validation_0-rmse:0.91796	validation_1-rmse:0.93260
[19]	validation_0-rmse:0.90913	validation_1-rmse:0.92432
[20]	validation_0-rmse:0.89492	validation_1-rmse:0.91017
[21]	validation_0-rmse:0.88829	validation_1-rmse:0.90392
[22]	validation_0-rmse:0.87392	validation_1-rmse:0.88977
[23]	validation_0-rmse:0.86861	validation_1-rmse:0.88474
[24]	validation_0-rmse:0.86132	validation_1-rmse:0.87797
[25]	validation_0-rmse:0.85329	validation_1-rmse:0.87001
[26]	validation_0-rmse:0.84629	validation_1-rmse:0.86399
[27]	validation_0-rmse:0.84228	validation_1-rmse:0.86025
[28]	validation_0-rmse:0.82948	validation_1-rmse:0.84766
[29]	validation_0-rmse:0.82443	validation_1-rmse:0.84259
[30]	validation_0-rmse:0.81865	validation_1-rmse:0.83697
[31]	validation_0-rmse:0.81032	validation_1-rmse:0.82826
[32]	validation_0-rmse:0.80613	validation_1-rmse:0.82463
[33]	validation_0-rmse:0.79825	validation_1-rmse:0.81654
[34]	validation_0-rmse:0.79385	validation_1-rmse:0.81247
[35]	validation_0-rmse:0.78938	validation_1-rmse:0.80817
[36]	validation_0-rmse:0.78403	validation_1-rmse:0.80279
[37]	validation_0-rmse:0.77763	validation_1-rmse:0.79578
[38]	validation_0-rmse:0.77188	validation_1-rmse:0.79002
[39]	validation_0-rmse:0.76876	validation_1-rmse:0.78732
[40]	validation_0-rmse:0.76482	validation_1-rmse:0.78360
[41]	validation_0-rmse:0.76153	validation_1-rmse:0.78042
[42]	validation_0-rmse:0.75761	validation_1-rmse:0.77662
[43]	validation_0-rmse:0.75505	validation_1-rmse:0.77429
[44]	validation_0-rmse:0.74784	validation_1-rmse:0.76718
[45]	validation_0-rmse:0.74436	validation_1-rmse:0.76362
[46]	validation_0-rmse:0.74161	validation_1-rmse:0.76113
[47]	validation_0-rmse:0.73874	validation_1-rmse:0.75835
[48]	validation_0-rmse:0.73685	validation_1-rmse:0.75670
[49]	validation_0-rmse:0.72998	validation_1-rmse:0.74995
[50]	validation_0-rmse:0.72732	validation_1-rmse:0.74729
[51]	validation_0-rmse:0.72496	validation_1-rmse:0.74508
[52]	validation_0-rmse:0.72322	validation_1-rmse:0.74357
[53]	validation_0-rmse:0.71648	validation_1-rmse:0.73696
[54]	validation_0-rmse:0.71215	validation_1-rmse:0.73274
[55]	validation_0-rmse:0.70946	validation_1-rmse:0.73034
[56]	validation_0-rmse:0.70474	validation_1-rmse:0.72589
[57]	validation_0-rmse:0.70225	validation_1-rmse:0.72381
[58]	validation_0-rmse:0.69904	validation_1-rmse:0.72064
[59]	validation_0-rmse:0.69714	validation_1-rmse:0.71883
[60]	validation_0-rmse:0.69561	validation_1-rmse:0.71744
[61]	validation_0-rmse:0.69325	validation_1-rmse:0.71524
[62]	validation_0-rmse:0.69104	validation_1-rmse:0.71305
[63]	validation_0-rmse:0.69006	validation_1-rmse:0.71232
[64]	validation_0-rmse:0.68818	validation_1-rmse:0.71033
[65]	validation_0-rmse:0.68616	validation_1-rmse:0.70841
[66]	validation_0-rmse:0.68262	validation_1-rmse:0.70526
[67]	validation_0-rmse:0.68176	validation_1-rmse:0.70447
[68]	validation_0-rmse:0.67850	validation_1-rmse:0.70120
[69]	validation_0-rmse:0.67641	validation_1-rmse:0.69928
[70]	validation_0-rmse:0.67258	validation_1-rmse:0.69567
[71]	validation_0-rmse:0.67036	validation_1-rmse:0.69351
[72]	validation_0-rmse:0.66815	validation_1-rmse:0.69125
[73]	validation_0-rmse:0.66614	validation_1-rmse:0.68928
[74]	validation_0-rmse:0.66432	validation_1-rmse:0.68760
[75]	validation_0-rmse:0.66248	validation_1-rmse:0.68610
[76]	validation_0-rmse:0.65946	validation_1-rmse:0.68334
[77]	validation_0-rmse:0.65517	validation_1-rmse:0.67913
[78]	validation_0-rmse:0.65370	validation_1-rmse:0.67769
[79]	validation_0-rmse:0.65207	validation_1-rmse:0.67613
[80]	validation_0-rmse:0.64983	validation_1-rmse:0.67398
[81]	validation_0-rmse:0.64652	validation_1-rmse:0.67057
[82]	validation_0-rmse:0.64520	validation_1-rmse:0.66954
[83]	validation_0-rmse:0.64431	validation_1-rmse:0.66872
[84]	validation_0-rmse:0.64233	validation_1-rmse:0.66684
[85]	validation_0-rmse:0.63975	validation_1-rmse:0.66435
[86]	validation_0-rmse:0.63599	validation_1-rmse:0.66079
[87]	validation_0-rmse:0.63434	validation_1-rmse:0.65934
[88]	validation_0-rmse:0.63354	validation_1-rmse:0.65869
[89]	validation_0-rmse:0.63196	validation_1-rmse:0.65723
[90]	validation_0-rmse:0.63117	validation_1-rmse:0.65674
[91]	validation_0-rmse:0.62832	validation_1-rmse:0.65397
[92]	validation_0-rmse:0.62586	validation_1-rmse:0.65173
[93]	validation_0-rmse:0.62409	validation_1-rmse:0.65037
[94]	validation_0-rmse:0.62341	validation_1-rmse:0.64970
[95]	validation_0-rmse:0.62245	validation_1-rmse:0.64880
[96]	validation_0-rmse:0.62052	validation_1-rmse:0.64689
[97]	validation_0-rmse:0.61910	validation_1-rmse:0.64546
[98]	validation_0-rmse:0.61797	validation_1-rmse:0.64444
[99]	validation_0-rmse:0.61731	validation_1-rmse:0.64395
[100]	validation_0-rmse:0.61527	validation_1-rmse:0.64188
[101]	validation_0-rmse:0.61252	validation_1-rmse:0.63920
[102]	validation_0-rmse:0.61040	validation_1-rmse:0.63729
[103]	validation_0-rmse:0.60781	validation_1-rmse:0.63474
[104]	validation_0-rmse:0.60627	validation_1-rmse:0.63318
[105]	validation_0-rmse:0.60525	validation_1-rmse:0.63230
[106]	validation_0-rmse:0.60465	validation_1-rmse:0.63181
[107]	validation_0-rmse:0.60387	validation_1-rmse:0.63126
[108]	validation_0-rmse:0.60238	validation_1-rmse:0.62979
[109]	validation_0-rmse:0.60132	validation_1-rmse:0.62888
[110]	validation_0-rmse:0.59925	validation_1-rmse:0.62682
[111]	validation_0-rmse:0.59744	validation_1-rmse:0.62498
[112]	validation_0-rmse:0.59614	validation_1-rmse:0.62372
[113]	validation_0-rmse:0.59443	validation_1-rmse:0.62208
[114]	validation_0-rmse:0.59319	validation_1-rmse:0.62098
[115]	validation_0-rmse:0.59276	validation_1-rmse:0.62057
[116]	validation_0-rmse:0.59202	validation_1-rmse:0.61992
[117]	validation_0-rmse:0.59066	validation_1-rmse:0.61868
[118]	validation_0-rmse:0.58772	validation_1-rmse:0.61593
[119]	validation_0-rmse:0.58679	validation_1-rmse:0.61514
[120]	validation_0-rmse:0.58513	validation_1-rmse:0.61358
[121]	validation_0-rmse:0.58457	validation_1-rmse:0.61312
[122]	validation_0-rmse:0.58340	validation_1-rmse:0.61209
[123]	validation_0-rmse:0.58187	validation_1-rmse:0.61061
[124]	validation_0-rmse:0.58081	validation_1-rmse:0.60963
[125]	validation_0-rmse:0.57979	validation_1-rmse:0.60856
[126]	validation_0-rmse:0.57889	validation_1-rmse:0.60784
[127]	validation_0-rmse:0.57697	validation_1-rmse:0.60598
[128]	validation_0-rmse:0.57600	validation_1-rmse:0.60515
[129]	validation_0-rmse:0.57439	validation_1-rmse:0.60353
[130]	validation_0-rmse:0.57260	validation_1-rmse:0.60175
[131]	validation_0-rmse:0.57148	validation_1-rmse:0.60074
[132]	validation_0-rmse:0.57023	validation_1-rmse:0.59937
[133]	validation_0-rmse:0.56945	validation_1-rmse:0.59871
[134]	validation_0-rmse:0.56755	validation_1-rmse:0.59693
[135]	validation_0-rmse:0.56638	validation_1-rmse:0.59581
[136]	validation_0-rmse:0.56540	validation_1-rmse:0.59494
[137]	validation_0-rmse:0.56342	validation_1-rmse:0.59283
[138]	validation_0-rmse:0.56237	validation_1-rmse:0.59187
[139]	validation_0-rmse:0.56056	validation_1-rmse:0.59030
[140]	validation_0-rmse:0.55908	validation_1-rmse:0.58884
[141]	validation_0-rmse:0.55815	validation_1-rmse:0.58791
[142]	validation_0-rmse:0.55539	validation_1-rmse:0.58534
[143]	validation_0-rmse:0.55494	validation_1-rmse:0.58503
[144]	validation_0-rmse:0.55366	validation_1-rmse:0.58394
[145]	validation_0-rmse:0.55179	validation_1-rmse:0.58223
[146]	validation_0-rmse:0.55087	validation_1-rmse:0.58146
[147]	validation_0-rmse:0.54980	validation_1-rmse:0.58060
[148]	validation_0-rmse:0.54936	validation_1-rmse:0.58024
[149]	validation_0-rmse:0.54801	validation_1-rmse:0.57895
[150]	validation_0-rmse:0.54743	validation_1-rmse:0.57849
[151]	validation_0-rmse:0.54691	validation_1-rmse:0.57810
[152]	validation_0-rmse:0.54565	validation_1-rmse:0.57695
[153]	validation_0-rmse:0.54435	validation_1-rmse:0.57570
[154]	validation_0-rmse:0.54369	validation_1-rmse:0.57506
[155]	validation_0-rmse:0.54322	validation_1-rmse:0.57480
[156]	validation_0-rmse:0.54236	validation_1-rmse:0.57402
[157]	validation_0-rmse:0.54100	validation_1-rmse:0.57250
[158]	validation_0-rmse:0.53975	validation_1-rmse:0.57124
[159]	validation_0-rmse:0.53739	validation_1-rmse:0.56911
[160]	validation_0-rmse:0.53583	validation_1-rmse:0.56773
[161]	validation_0-rmse:0.53499	validation_1-rmse:0.56688
[162]	validation_0-rmse:0.53361	validation_1-rmse:0.56559
[163]	validation_0-rmse:0.53284	validation_1-rmse:0.56496
[164]	validation_0-rmse:0.53238	validation_1-rmse:0.56460
[165]	validation_0-rmse:0.53147	validation_1-rmse:0.56377
[166]	validation_0-rmse:0.53066	validation_1-rmse:0.56313
[167]	validation_0-rmse:0.53004	validation_1-rmse:0.56264
[168]	validation_0-rmse:0.52918	validation_1-rmse:0.56191
[169]	validation_0-rmse:0.52860	validation_1-rmse:0.56138
[170]	validation_0-rmse:0.52758	validation_1-rmse:0.56042
[171]	validation_0-rmse:0.52702	validation_1-rmse:0.56010
[172]	validation_0-rmse:0.52610	validation_1-rmse:0.55931
[173]	validation_0-rmse:0.52566	validation_1-rmse:0.55887
[174]	validation_0-rmse:0.52498	validation_1-rmse:0.55828
[175]	validation_0-rmse:0.52393	validation_1-rmse:0.55722
[176]	validation_0-rmse:0.52274	validation_1-rmse:0.55596
[177]	validation_0-rmse:0.52195	validation_1-rmse:0.55522
[178]	validation_0-rmse:0.52111	validation_1-rmse:0.55448
[179]	validation_0-rmse:0.52027	validation_1-rmse:0.55378
[180]	validation_0-rmse:0.51952	validation_1-rmse:0.55308
[181]	validation_0-rmse:0.51820	validation_1-rmse:0.55167
[182]	validation_0-rmse:0.51790	validation_1-rmse:0.55143
[183]	validation_0-rmse:0.51714	validation_1-rmse:0.55076
[184]	validation_0-rmse:0.51572	validation_1-rmse:0.54942
[185]	validation_0-rmse:0.51481	validation_1-rmse:0.54854
[186]	validation_0-rmse:0.51370	validation_1-rmse:0.54776
[187]	validation_0-rmse:0.51299	validation_1-rmse:0.54706
[188]	validation_0-rmse:0.51258	validation_1-rmse:0.54691
[189]	validation_0-rmse:0.51219	validation_1-rmse:0.54664
[190]	validation_0-rmse:0.51169	validation_1-rmse:0.54624
[191]	validation_0-rmse:0.51034	validation_1-rmse:0.54494
[192]	validation_0-rmse:0.50941	validation_1-rmse:0.54410
[193]	validation_0-rmse:0.50858	validation_1-rmse:0.54330
[194]	validation_0-rmse:0.50823	validation_1-rmse:0.54313
[195]	validation_0-rmse:0.50607	validation_1-rmse:0.54109
[196]	validation_0-rmse:0.50546	validation_1-rmse:0.54068
[197]	validation_0-rmse:0.50382	validation_1-rmse:0.53909
[198]	validation_0-rmse:0.50290	validation_1-rmse:0.53810
[199]	validation_0-rmse:0.50191	validation_1-rmse:0.53701
[200]	validation_0-rmse:0.50105	validation_1-rmse:0.53611
[201]	validation_0-rmse:0.50018	validation_1-rmse:0.53536
[202]	validation_0-rmse:0.49996	validation_1-rmse:0.53517
[203]	validation_0-rmse:0.49947	validation_1-rmse:0.53483
[204]	validation_0-rmse:0.49840	validation_1-rmse:0.53381
[205]	validation_0-rmse:0.49784	validation_1-rmse:0.53337
[206]	validation_0-rmse:0.49677	validation_1-rmse:0.53233
[207]	validation_0-rmse:0.49617	validation_1-rmse:0.53182
[208]	validation_0-rmse:0.49521	validation_1-rmse:0.53093
[209]	validation_0-rmse:0.49405	validation_1-rmse:0.52983
[210]	validation_0-rmse:0.49375	validation_1-rmse:0.52961
[211]	validation_0-rmse:0.49340	validation_1-rmse:0.52934
[212]	validation_0-rmse:0.49237	validation_1-rmse:0.52840
[213]	validation_0-rmse:0.49193	validation_1-rmse:0.52802
[214]	validation_0-rmse:0.49094	validation_1-rmse:0.52707
[215]	validation_0-rmse:0.49013	validation_1-rmse:0.52641
[216]	validation_0-rmse:0.48965	validation_1-rmse:0.52600
[217]	validation_0-rmse:0.48737	validation_1-rmse:0.52383
[218]	validation_0-rmse:0.48710	validation_1-rmse:0.52363
[219]	validation_0-rmse:0.48586	validation_1-rmse:0.52233
[220]	validation_0-rmse:0.48473	validation_1-rmse:0.52122
[221]	validation_0-rmse:0.48404	validation_1-rmse:0.52058
[222]	validation_0-rmse:0.48273	validation_1-rmse:0.51926
[223]	validation_0-rmse:0.48212	validation_1-rmse:0.51873
[224]	validation_0-rmse:0.48177	validation_1-rmse:0.51840
[225]	validation_0-rmse:0.48123	validation_1-rmse:0.51803
[226]	validation_0-rmse:0.48067	validation_1-rmse:0.51755
[227]	validation_0-rmse:0.47945	validation_1-rmse:0.51643
[228]	validation_0-rmse:0.47778	validation_1-rmse:0.51475
[229]	validation_0-rmse:0.47737	validation_1-rmse:0.51443
[230]	validation_0-rmse:0.47615	validation_1-rmse:0.51315
[231]	validation_0-rmse:0.47549	validation_1-rmse:0.51263
[232]	validation_0-rmse:0.47475	validation_1-rmse:0.51183
[233]	validation_0-rmse:0.47406	validation_1-rmse:0.51118
[234]	validation_0-rmse:0.47367	validation_1-rmse:0.51092
[235]	validation_0-rmse:0.47265	validation_1-rmse:0.51004
[236]	validation_0-rmse:0.47141	validation_1-rmse:0.50888
[237]	validation_0-rmse:0.47112	validation_1-rmse:0.50876
[238]	validation_0-rmse:0.47066	validation_1-rmse:0.50834
[239]	validation_0-rmse:0.46947	validation_1-rmse:0.50721
[240]	validation_0-rmse:0.46883	validation_1-rmse:0.50657
[241]	validation_0-rmse:0.46748	validation_1-rmse:0.50510
[242]	validation_0-rmse:0.46717	validation_1-rmse:0.50484
[243]	validation_0-rmse:0.46558	validation_1-rmse:0.50342
[244]	validation_0-rmse:0.46543	validation_1-rmse:0.50330
[245]	validation_0-rmse:0.46473	validation_1-rmse:0.50277
[246]	validation_0-rmse:0.46364	validation_1-rmse:0.50176
[247]	validation_0-rmse:0.46245	validation_1-rmse:0.50070
[248]	validation_0-rmse:0.46157	validation_1-rmse:0.49977
[249]	validation_0-rmse:0.46107	validation_1-rmse:0.49927
[250]	validation_0-rmse:0.46034	validation_1-rmse:0.49852
[251]	validation_0-rmse:0.45947	validation_1-rmse:0.49763
[252]	validation_0-rmse:0.45893	validation_1-rmse:0.49722
[253]	validation_0-rmse:0.45852	validation_1-rmse:0.49702
[254]	validation_0-rmse:0.45776	validation_1-rmse:0.49628
[255]	validation_0-rmse:0.45723	validation_1-rmse:0.49585
[256]	validation_0-rmse:0.45649	validation_1-rmse:0.49520
[257]	validation_0-rmse:0.45608	validation_1-rmse:0.49483
[258]	validation_0-rmse:0.45571	validation_1-rmse:0.49456
[259]	validation_0-rmse:0.45525	validation_1-rmse:0.49419
[260]	validation_0-rmse:0.45465	validation_1-rmse:0.49368
[261]	validation_0-rmse:0.45411	validation_1-rmse:0.49343
[262]	validation_0-rmse:0.45353	validation_1-rmse:0.49284
[263]	validation_0-rmse:0.45302	validation_1-rmse:0.49239
[264]	validation_0-rmse:0.45280	validation_1-rmse:0.49229
[265]	validation_0-rmse:0.45247	validation_1-rmse:0.49207
[266]	validation_0-rmse:0.45206	validation_1-rmse:0.49174
[267]	validation_0-rmse:0.45178	validation_1-rmse:0.49155
[268]	validation_0-rmse:0.45149	validation_1-rmse:0.49145
[269]	validation_0-rmse:0.45106	validation_1-rmse:0.49108
[270]	validation_0-rmse:0.45072	validation_1-rmse:0.49083
[271]	validation_0-rmse:0.45026	validation_1-rmse:0.49048
[272]	validation_0-rmse:0.44961	validation_1-rmse:0.48984
[273]	validation_0-rmse:0.44931	validation_1-rmse:0.48955
[274]	validation_0-rmse:0.44878	validation_1-rmse:0.48914
[275]	validation_0-rmse:0.44835	validation_1-rmse:0.48867
[276]	validation_0-rmse:0.44710	validation_1-rmse:0.48746
[277]	validation_0-rmse:0.44673	validation_1-rmse:0.48728
[278]	validation_0-rmse:0.44592	validation_1-rmse:0.48654
[279]	validation_0-rmse:0.44522	validation_1-rmse:0.48582
[280]	validation_0-rmse:0.44447	validation_1-rmse:0.48517
[281]	validation_0-rmse:0.44388	validation_1-rmse:0.48466
[282]	validation_0-rmse:0.44354	validation_1-rmse:0.48443
[283]	validation_0-rmse:0.44305	validation_1-rmse:0.48400
[284]	validation_0-rmse:0.44255	validation_1-rmse:0.48353
[285]	validation_0-rmse:0.44202	validation_1-rmse:0.48311
[286]	validation_0-rmse:0.44176	validation_1-rmse:0.48287
[287]	validation_0-rmse:0.44136	validation_1-rmse:0.48248
[288]	validation_0-rmse:0.44102	validation_1-rmse:0.48214
[289]	validation_0-rmse:0.44057	validation_1-rmse:0.48177
[290]	validation_0-rmse:0.43979	validation_1-rmse:0.48102
[291]	validation_0-rmse:0.43939	validation_1-rmse:0.48068
[292]	validation_0-rmse:0.43812	validation_1-rmse:0.47935
[293]	validation_0-rmse:0.43747	validation_1-rmse:0.47875
[294]	validation_0-rmse:0.43696	validation_1-rmse:0.47833
[295]	validation_0-rmse:0.43659	validation_1-rmse:0.47803
[296]	validation_0-rmse:0.43619	validation_1-rmse:0.47775
[297]	validation_0-rmse:0.43589	validation_1-rmse:0.47756
[298]	validation_0-rmse:0.43566	validation_1-rmse:0.47735
[299]	validation_0-rmse:0.43489	validation_1-rmse:0.47657
[300]	validation_0-rmse:0.43458	validation_1-rmse:0.47641
[301]	validation_0-rmse:0.43410	validation_1-rmse:0.47593
[302]	validation_0-rmse:0.43384	validation_1-rmse:0.47584
[303]	validation_0-rmse:0.43348	validation_1-rmse:0.47563
[304]	validation_0-rmse:0.43271	validation_1-rmse:0.47500
[305]	validation_0-rmse:0.43245	validation_1-rmse:0.47488
[306]	validation_0-rmse:0.43208	validation_1-rmse:0.47465
[307]	validation_0-rmse:0.43185	validation_1-rmse:0.47442
[308]	validation_0-rmse:0.43143	validation_1-rmse:0.47408
[309]	validation_0-rmse:0.43087	validation_1-rmse:0.47353
[310]	validation_0-rmse:0.43068	validation_1-rmse:0.47347
[311]	validation_0-rmse:0.43040	validation_1-rmse:0.47332
[312]	validation_0-rmse:0.43021	validation_1-rmse:0.47323
[313]	validation_0-rmse:0.43002	validation_1-rmse:0.47313
[314]	validation_0-rmse:0.42950	validation_1-rmse:0.47264
[315]	validation_0-rmse:0.42897	validation_1-rmse:0.47232
[316]	validation_0-rmse:0.42883	validation_1-rmse:0.47220
[317]	validation_0-rmse:0.42853	validation_1-rmse:0.47193
[318]	validation_0-rmse:0.42800	validation_1-rmse:0.47138
[319]	validation_0-rmse:0.42731	validation_1-rmse:0.47069
[320]	validation_0-rmse:0.42680	validation_1-rmse:0.47024
[321]	validation_0-rmse:0.42608	validation_1-rmse:0.46953
[322]	validation_0-rmse:0.42542	validation_1-rmse:0.46900
[323]	validation_0-rmse:0.42511	validation_1-rmse:0.46871
[324]	validation_0-rmse:0.42458	validation_1-rmse:0.46831
[325]	validation_0-rmse:0.42361	validation_1-rmse:0.46750
[326]	validation_0-rmse:0.42323	validation_1-rmse:0.46721
[327]	validation_0-rmse:0.42288	validation_1-rmse:0.46700
[328]	validation_0-rmse:0.42277	validation_1-rmse:0.46699
[329]	validation_0-rmse:0.42233	validation_1-rmse:0.46665
[330]	validation_0-rmse:0.42190	validation_1-rmse:0.46616
[331]	validation_0-rmse:0.42144	validation_1-rmse:0.46578
[332]	validation_0-rmse:0.42054	validation_1-rmse:0.46491
[333]	validation_0-rmse:0.42011	validation_1-rmse:0.46457
[334]	validation_0-rmse:0.41891	validation_1-rmse:0.46348
[335]	validation_0-rmse:0.41850	validation_1-rmse:0.46317
[336]	validation_0-rmse:0.41827	validation_1-rmse:0.46299
[337]	validation_0-rmse:0.41746	validation_1-rmse:0.46225
[338]	validation_0-rmse:0.41700	validation_1-rmse:0.46181
[339]	validation_0-rmse:0.41659	validation_1-rmse:0.46154
[340]	validation_0-rmse:0.41598	validation_1-rmse:0.46098
[341]	validation_0-rmse:0.41526	validation_1-rmse:0.46023
[342]	validation_0-rmse:0.41433	validation_1-rmse:0.45930
[343]	validation_0-rmse:0.41418	validation_1-rmse:0.45920
[344]	validation_0-rmse:0.41395	validation_1-rmse:0.45906
[345]	validation_0-rmse:0.41343	validation_1-rmse:0.45855
[346]	validation_0-rmse:0.41314	validation_1-rmse:0.45834
[347]	validation_0-rmse:0.41288	validation_1-rmse:0.45814
[348]	validation_0-rmse:0.41245	validation_1-rmse:0.45773
[349]	validation_0-rmse:0.41215	validation_1-rmse:0.45750
[350]	validation_0-rmse:0.41125	validation_1-rmse:0.45666
[351]	validation_0-rmse:0.41105	validation_1-rmse:0.45650
[352]	validation_0-rmse:0.41089	validation_1-rmse:0.45641
[353]	validation_0-rmse:0.41064	validation_1-rmse:0.45628
[354]	validation_0-rmse:0.41033	validation_1-rmse:0.45610
[355]	validation_0-rmse:0.41005	validation_1-rmse:0.45591
[356]	validation_0-rmse:0.40967	validation_1-rmse:0.45564
[357]	validation_0-rmse:0.40942	validation_1-rmse:0.45553
[358]	validation_0-rmse:0.40915	validation_1-rmse:0.45531
[359]	validation_0-rmse:0.40864	validation_1-rmse:0.45481
[360]	validation_0-rmse:0.40837	validation_1-rmse:0.45466
[361]	validation_0-rmse:0.40770	validation_1-rmse:0.45414
[362]	validation_0-rmse:0.40737	validation_1-rmse:0.45389
[363]	validation_0-rmse:0.40705	validation_1-rmse:0.45362
[364]	validation_0-rmse:0.40681	validation_1-rmse:0.45354
[365]	validation_0-rmse:0.40654	validation_1-rmse:0.45331
[366]	validation_0-rmse:0.40638	validation_1-rmse:0.45318
[367]	validation_0-rmse:0.40567	validation_1-rmse:0.45252
[368]	validation_0-rmse:0.40551	validation_1-rmse:0.45243
[369]	validation_0-rmse:0.40520	validation_1-rmse:0.45223
[370]	validation_0-rmse:0.40470	validation_1-rmse:0.45175
[371]	validation_0-rmse:0.40436	validation_1-rmse:0.45149
[372]	validation_0-rmse:0.40410	validation_1-rmse:0.45132
[373]	validation_0-rmse:0.40388	validation_1-rmse:0.45117
[374]	validation_0-rmse:0.40351	validation_1-rmse:0.45083
[375]	validation_0-rmse:0.40337	validation_1-rmse:0.45073
[376]	validation_0-rmse:0.40326	validation_1-rmse:0.45063
[377]	validation_0-rmse:0.40296	validation_1-rmse:0.45038
[378]	validation_0-rmse:0.40275	validation_1-rmse:0.45021
[379]	validation_0-rmse:0.40225	validation_1-rmse:0.44978
[380]	validation_0-rmse:0.40200	validation_1-rmse:0.44953
[381]	validation_0-rmse:0.40183	validation_1-rmse:0.44949
[382]	validation_0-rmse:0.40149	validation_1-rmse:0.44928
[383]	validation_0-rmse:0.40094	validation_1-rmse:0.44884
[384]	validation_0-rmse:0.40074	validation_1-rmse:0.44866
[385]	validation_0-rmse:0.40024	validation_1-rmse:0.44816
[386]	validation_0-rmse:0.39963	validation_1-rmse:0.44762
[387]	validation_0-rmse:0.39945	validation_1-rmse:0.44754
[388]	validation_0-rmse:0.39915	validation_1-rmse:0.44730
[389]	validation_0-rmse:0.39894	validation_1-rmse:0.44723
[390]	validation_0-rmse:0.39844	validation_1-rmse:0.44675
[391]	validation_0-rmse:0.39782	validation_1-rmse:0.44622
[392]	validation_0-rmse:0.39772	validation_1-rmse:0.44620
[393]	validation_0-rmse:0.39768	validation_1-rmse:0.44620
[394]	validation_0-rmse:0.39702	validation_1-rmse:0.44563
[395]	validation_0-rmse:0.39666	validation_1-rmse:0.44541
[396]	validation_0-rmse:0.39638	validation_1-rmse:0.44530
[397]	validation_0-rmse:0.39604	validation_1-rmse:0.44499
[398]	validation_0-rmse:0.39500	validation_1-rmse:0.44412
[399]	validation_0-rmse:0.39479	validation_1-rmse:0.44405
[400]	validation_0-rmse:0.39458	validation_1-rmse:0.44388
[401]	validation_0-rmse:0.39434	validation_1-rmse:0.44372
[402]	validation_0-rmse:0.39416	validation_1-rmse:0.44365
[403]	validation_0-rmse:0.39382	validation_1-rmse:0.44338
[404]	validation_0-rmse:0.39367	validation_1-rmse:0.44330
[405]	validation_0-rmse:0.39323	validation_1-rmse:0.44291
[406]	validation_0-rmse:0.39295	validation_1-rmse:0.44272
[407]	validation_0-rmse:0.39260	validation_1-rmse:0.44244
[408]	validation_0-rmse:0.39224	validation_1-rmse:0.44223
[409]	validation_0-rmse:0.39192	validation_1-rmse:0.44194
[410]	validation_0-rmse:0.39151	validation_1-rmse:0.44168
[411]	validation_0-rmse:0.39131	validation_1-rmse:0.44156
[412]	validation_0-rmse:0.39092	validation_1-rmse:0.44121
[413]	validation_0-rmse:0.39077	validation_1-rmse:0.44114
[414]	validation_0-rmse:0.39021	validation_1-rmse:0.44063
[415]	validation_0-rmse:0.38981	validation_1-rmse:0.44017
[416]	validation_0-rmse:0.38955	validation_1-rmse:0.44002
[417]	validation_0-rmse:0.38910	validation_1-rmse:0.43958
[418]	validation_0-rmse:0.38876	validation_1-rmse:0.43931
[419]	validation_0-rmse:0.38849	validation_1-rmse:0.43910
[420]	validation_0-rmse:0.38785	validation_1-rmse:0.43856
[421]	validation_0-rmse:0.38751	validation_1-rmse:0.43826
[422]	validation_0-rmse:0.38727	validation_1-rmse:0.43812
[423]	validation_0-rmse:0.38683	validation_1-rmse:0.43771
[424]	validation_0-rmse:0.38660	validation_1-rmse:0.43753
[425]	validation_0-rmse:0.38641	validation_1-rmse:0.43742
[426]	validation_0-rmse:0.38594	validation_1-rmse:0.43701
[427]	validation_0-rmse:0.38518	validation_1-rmse:0.43624
[428]	validation_0-rmse:0.38510	validation_1-rmse:0.43620
[429]	validation_0-rmse:0.38468	validation_1-rmse:0.43586
[430]	validation_0-rmse:0.38439	validation_1-rmse:0.43559
[431]	validation_0-rmse:0.38410	validation_1-rmse:0.43534
[432]	validation_0-rmse:0.38381	validation_1-rmse:0.43515
[433]	validation_0-rmse:0.38336	validation_1-rmse:0.43491
[434]	validation_0-rmse:0.38271	validation_1-rmse:0.43434
[435]	validation_0-rmse:0.38248	validation_1-rmse:0.43421
[436]	validation_0-rmse:0.38197	validation_1-rmse:0.43369
[437]	validation_0-rmse:0.38179	validation_1-rmse:0.43358
[438]	validation_0-rmse:0.38118	validation_1-rmse:0.43304
[439]	validation_0-rmse:0.38107	validation_1-rmse:0.43295
[440]	validation_0-rmse:0.38085	validation_1-rmse:0.43278
[441]	validation_0-rmse:0.38074	validation_1-rmse:0.43276
[442]	validation_0-rmse:0.38062	validation_1-rmse:0.43268
[443]	validation_0-rmse:0.38013	validation_1-rmse:0.43228
[444]	validation_0-rmse:0.37958	validation_1-rmse:0.43171
[445]	validation_0-rmse:0.37949	validation_1-rmse:0.43169
[446]	validation_0-rmse:0.37920	validation_1-rmse:0.43144
[447]	validation_0-rmse:0.37887	validation_1-rmse:0.43116
[448]	validation_0-rmse:0.37862	validation_1-rmse:0.43095
[449]	validation_0-rmse:0.37826	validation_1-rmse:0.43073
[450]	validation_0-rmse:0.37802	validation_1-rmse:0.43053
[451]	validation_0-rmse:0.37768	validation_1-rmse:0.43028
[452]	validation_0-rmse:0.37714	validation_1-rmse:0.42982
[453]	validation_0-rmse:0.37673	validation_1-rmse:0.42947
[454]	validation_0-rmse:0.37638	validation_1-rmse:0.42922
[455]	validation_0-rmse:0.37598	validation_1-rmse:0.42888
[456]	validation_0-rmse:0.37558	validation_1-rmse:0.42844
[457]	validation_0-rmse:0.37534	validation_1-rmse:0.42821
[458]	validation_0-rmse:0.37499	validation_1-rmse:0.42794
[459]	validation_0-rmse:0.37463	validation_1-rmse:0.42762
[460]	validation_0-rmse:0.37437	validation_1-rmse:0.42747
[461]	validation_0-rmse:0.37405	validation_1-rmse:0.42725
[462]	validation_0-rmse:0.37379	validation_1-rmse:0.42704
[463]	validation_0-rmse:0.37334	validation_1-rmse:0.42662
[464]	validation_0-rmse:0.37319	validation_1-rmse:0.42655
[465]	validation_0-rmse:0.37288	validation_1-rmse:0.42636
[466]	validation_0-rmse:0.37258	validation_1-rmse:0.42612
[467]	validation_0-rmse:0.37223	validation_1-rmse:0.42589
[468]	validation_0-rmse:0.37171	validation_1-rmse:0.42543
[469]	validation_0-rmse:0.37109	validation_1-rmse:0.42488
[470]	validation_0-rmse:0.37102	validation_1-rmse:0.42484
[471]	validation_0-rmse:0.37082	validation_1-rmse:0.42474
[472]	validation_0-rmse:0.37060	validation_1-rmse:0.42458
[473]	validation_0-rmse:0.37029	validation_1-rmse:0.42433
[474]	validation_0-rmse:0.36983	validation_1-rmse:0.42396
[475]	validation_0-rmse:0.36952	validation_1-rmse:0.42370
[476]	validation_0-rmse:0.36896	validation_1-rmse:0.42321
[477]	validation_0-rmse:0.36864	validation_1-rmse:0.42292
[478]	validation_0-rmse:0.36834	validation_1-rmse:0.42263
[479]	validation_0-rmse:0.36779	validation_1-rmse:0.42212
[480]	validation_0-rmse:0.36756	validation_1-rmse:0.42206
[481]	validation_0-rmse:0.36702	validation_1-rmse:0.42161
[482]	validation_0-rmse:0.36682	validation_1-rmse:0.42149
[483]	validation_0-rmse:0.36653	validation_1-rmse:0.42131
[484]	validation_0-rmse:0.36630	validation_1-rmse:0.42108
[485]	validation_0-rmse:0.36593	validation_1-rmse:0.42076
[486]	validation_0-rmse:0.36569	validation_1-rmse:0.42064
[487]	validation_0-rmse:0.36553	validation_1-rmse:0.42059
[488]	validation_0-rmse:0.36527	validation_1-rmse:0.42040
[489]	validation_0-rmse:0.36510	validation_1-rmse:0.42029
[490]	validation_0-rmse:0.36471	validation_1-rmse:0.42000
[491]	validation_0-rmse:0.36435	validation_1-rmse:0.41969
[492]	validation_0-rmse:0.36395	validation_1-rmse:0.41940
[493]	validation_0-rmse:0.36357	validation_1-rmse:0.41904
[494]	validation_0-rmse:0.36338	validation_1-rmse:0.41890
[495]	validation_0-rmse:0.36311	validation_1-rmse:0.41872
[496]	validation_0-rmse:0.36287	validation_1-rmse:0.41856
[497]	validation_0-rmse:0.36267	validation_1-rmse:0.41839
[498]	validation_0-rmse:0.36219	validation_1-rmse:0.41791
[499]	validation_0-rmse:0.36194	validation_1-rmse:0.41772
[500]	validation_0-rmse:0.36170	validation_1-rmse:0.41750
[501]	validation_0-rmse:0.36118	validation_1-rmse:0.41714
[502]	validation_0-rmse:0.36058	validation_1-rmse:0.41646
[503]	validation_0-rmse:0.36034	validation_1-rmse:0.41634
[504]	validation_0-rmse:0.36019	validation_1-rmse:0.41623
[505]	validation_0-rmse:0.36004	validation_1-rmse:0.41616
[506]	validation_0-rmse:0.35949	validation_1-rmse:0.41563
[507]	validation_0-rmse:0.35937	validation_1-rmse:0.41557
[508]	validation_0-rmse:0.35921	validation_1-rmse:0.41549
[509]	validation_0-rmse:0.35874	validation_1-rmse:0.41501
[510]	validation_0-rmse:0.35860	validation_1-rmse:0.41492
[511]	validation_0-rmse:0.35835	validation_1-rmse:0.41474
[512]	validation_0-rmse:0.35778	validation_1-rmse:0.41425
[513]	validation_0-rmse:0.35750	validation_1-rmse:0.41406
[514]	validation_0-rmse:0.35722	validation_1-rmse:0.41382
[515]	validation_0-rmse:0.35701	validation_1-rmse:0.41369
[516]	validation_0-rmse:0.35647	validation_1-rmse:0.41319
[517]	validation_0-rmse:0.35641	validation_1-rmse:0.41318
[518]	validation_0-rmse:0.35615	validation_1-rmse:0.41294
[519]	validation_0-rmse:0.35588	validation_1-rmse:0.41270
[520]	validation_0-rmse:0.35568	validation_1-rmse:0.41259
[521]	validation_0-rmse:0.35546	validation_1-rmse:0.41244
[522]	validation_0-rmse:0.35527	validation_1-rmse:0.41236
[523]	validation_0-rmse:0.35460	validation_1-rmse:0.41177
[524]	validation_0-rmse:0.35437	validation_1-rmse:0.41163
[525]	validation_0-rmse:0.35417	validation_1-rmse:0.41150
[526]	validation_0-rmse:0.35384	validation_1-rmse:0.41120
[527]	validation_0-rmse:0.35373	validation_1-rmse:0.41113
[528]	validation_0-rmse:0.35334	validation_1-rmse:0.41079
[529]	validation_0-rmse:0.35284	validation_1-rmse:0.41039
[530]	validation_0-rmse:0.35263	validation_1-rmse:0.41021
[531]	validation_0-rmse:0.35241	validation_1-rmse:0.41004
[532]	validation_0-rmse:0.35216	validation_1-rmse:0.40977
[533]	validation_0-rmse:0.35185	validation_1-rmse:0.40950
[534]	validation_0-rmse:0.35137	validation_1-rmse:0.40907
[535]	validation_0-rmse:0.35116	validation_1-rmse:0.40898
[536]	validation_0-rmse:0.35086	validation_1-rmse:0.40874
[537]	validation_0-rmse:0.35074	validation_1-rmse:0.40864
[538]	validation_0-rmse:0.35046	validation_1-rmse:0.40841
[539]	validation_0-rmse:0.35035	validation_1-rmse:0.40838
[540]	validation_0-rmse:0.35014	validation_1-rmse:0.40828
[541]	validation_0-rmse:0.34987	validation_1-rmse:0.40803
[542]	validation_0-rmse:0.34939	validation_1-rmse:0.40762
[543]	validation_0-rmse:0.34915	validation_1-rmse:0.40744
[544]	validation_0-rmse:0.34897	validation_1-rmse:0.40733
[545]	validation_0-rmse:0.34833	validation_1-rmse:0.40681
[546]	validation_0-rmse:0.34816	validation_1-rmse:0.40668
[547]	validation_0-rmse:0.34789	validation_1-rmse:0.40647
[548]	validation_0-rmse:0.34766	validation_1-rmse:0.40629
[549]	validation_0-rmse:0.34735	validation_1-rmse:0.40604
[550]	validation_0-rmse:0.34728	validation_1-rmse:0.40603
[551]	validation_0-rmse:0.34710	validation_1-rmse:0.40593
[552]	validation_0-rmse:0.34676	validation_1-rmse:0.40565
[553]	validation_0-rmse:0.34656	validation_1-rmse:0.40552
[554]	validation_0-rmse:0.34638	validation_1-rmse:0.40541
[555]	validation_0-rmse:0.34626	validation_1-rmse:0.40539
[556]	validation_0-rmse:0.34614	validation_1-rmse:0.40527
[557]	validation_0-rmse:0.34584	validation_1-rmse:0.40500
[558]	validation_0-rmse:0.34560	validation_1-rmse:0.40491
[559]	validation_0-rmse:0.34526	validation_1-rmse:0.40460
[560]	validation_0-rmse:0.34505	validation_1-rmse:0.40457
[561]	validation_0-rmse:0.34485	validation_1-rmse:0.40442
[562]	validation_0-rmse:0.34426	validation_1-rmse:0.40383
[563]	validation_0-rmse:0.34408	validation_1-rmse:0.40367
[564]	validation_0-rmse:0.34376	validation_1-rmse:0.40334
[565]	validation_0-rmse:0.34367	validation_1-rmse:0.40328
[566]	validation_0-rmse:0.34346	validation_1-rmse:0.40317
[567]	validation_0-rmse:0.34321	validation_1-rmse:0.40296
[568]	validation_0-rmse:0.34307	validation_1-rmse:0.40284
[569]	validation_0-rmse:0.34284	validation_1-rmse:0.40269
[570]	validation_0-rmse:0.34261	validation_1-rmse:0.40253
[571]	validation_0-rmse:0.34206	validation_1-rmse:0.40197
[572]	validation_0-rmse:0.34194	validation_1-rmse:0.40189
[573]	validation_0-rmse:0.34160	validation_1-rmse:0.40160
[574]	validation_0-rmse:0.34133	validation_1-rmse:0.40142
[575]	validation_0-rmse:0.34099	validation_1-rmse:0.40109
[576]	validation_0-rmse:0.34077	validation_1-rmse:0.40095
[577]	validation_0-rmse:0.34059	validation_1-rmse:0.40082
[578]	validation_0-rmse:0.34026	validation_1-rmse:0.40061
[579]	validation_0-rmse:0.33986	validation_1-rmse:0.40021
[580]	validation_0-rmse:0.33969	validation_1-rmse:0.40015
[581]	validation_0-rmse:0.33965	validation_1-rmse:0.40014
[582]	validation_0-rmse:0.33939	validation_1-rmse:0.39996
[583]	validation_0-rmse:0.33926	validation_1-rmse:0.39989
[584]	validation_0-rmse:0.33910	validation_1-rmse:0.39977
[585]	validation_0-rmse:0.33894	validation_1-rmse:0.39969
[586]	validation_0-rmse:0.33866	validation_1-rmse:0.39952
[587]	validation_0-rmse:0.33855	validation_1-rmse:0.39943
[588]	validation_0-rmse:0.33843	validation_1-rmse:0.39939
[589]	validation_0-rmse:0.33836	validation_1-rmse:0.39936
[590]	validation_0-rmse:0.33823	validation_1-rmse:0.39925
[591]	validation_0-rmse:0.33807	validation_1-rmse:0.39920
[592]	validation_0-rmse:0.33791	validation_1-rmse:0.39907
[593]	validation_0-rmse:0.33785	validation_1-rmse:0.39902
[594]	validation_0-rmse:0.33770	validation_1-rmse:0.39891
[595]	validation_0-rmse:0.33748	validation_1-rmse:0.39878
[596]	validation_0-rmse:0.33710	validation_1-rmse:0.39848
[597]	validation_0-rmse:0.33689	validation_1-rmse:0.39827
[598]	validation_0-rmse:0.33670	validation_1-rmse:0.39819
[599]	validation_0-rmse:0.33625	validation_1-rmse:0.39780
[600]	validation_0-rmse:0.33609	validation_1-rmse:0.39768
[601]	validation_0-rmse:0.33585	validation_1-rmse:0.39753
[602]	validation_0-rmse:0.33575	validation_1-rmse:0.39746
[603]	validation_0-rmse:0.33540	validation_1-rmse:0.39715
[604]	validation_0-rmse:0.33529	validation_1-rmse:0.39706
[605]	validation_0-rmse:0.33504	validation_1-rmse:0.39687
[606]	validation_0-rmse:0.33483	validation_1-rmse:0.39677
[607]	validation_0-rmse:0.33463	validation_1-rmse:0.39666
[608]	validation_0-rmse:0.33439	validation_1-rmse:0.39648
[609]	validation_0-rmse:0.33403	validation_1-rmse:0.39623
[610]	validation_0-rmse:0.33393	validation_1-rmse:0.39613
[611]	validation_0-rmse:0.33357	validation_1-rmse:0.39574
[612]	validation_0-rmse:0.33333	validation_1-rmse:0.39553
[613]	validation_0-rmse:0.33314	validation_1-rmse:0.39539
[614]	validation_0-rmse:0.33280	validation_1-rmse:0.39515
[615]	validation_0-rmse:0.33260	validation_1-rmse:0.39507
[616]	validation_0-rmse:0.33248	validation_1-rmse:0.39502
[617]	validation_0-rmse:0.33232	validation_1-rmse:0.39489
[618]	validation_0-rmse:0.33198	validation_1-rmse:0.39460
[619]	validation_0-rmse:0.33164	validation_1-rmse:0.39435
[620]	validation_0-rmse:0.33130	validation_1-rmse:0.39401
[621]	validation_0-rmse:0.33113	validation_1-rmse:0.39387
[622]	validation_0-rmse:0.33096	validation_1-rmse:0.39377
[623]	validation_0-rmse:0.33092	validation_1-rmse:0.39377
[624]	validation_0-rmse:0.33048	validation_1-rmse:0.39338
[625]	validation_0-rmse:0.33028	validation_1-rmse:0.39324
[626]	validation_0-rmse:0.32988	validation_1-rmse:0.39283
[627]	validation_0-rmse:0.32977	validation_1-rmse:0.39276
[628]	validation_0-rmse:0.32966	validation_1-rmse:0.39265
[629]	validation_0-rmse:0.32957	validation_1-rmse:0.39259
[630]	validation_0-rmse:0.32939	validation_1-rmse:0.39249
[631]	validation_0-rmse:0.32931	validation_1-rmse:0.39245
[632]	validation_0-rmse:0.32922	validation_1-rmse:0.39245
[633]	validation_0-rmse:0.32913	validation_1-rmse:0.39241
[634]	validation_0-rmse:0.32903	validation_1-rmse:0.39240
[635]	validation_0-rmse:0.32859	validation_1-rmse:0.39200
[636]	validation_0-rmse:0.32849	validation_1-rmse:0.39198
[637]	validation_0-rmse:0.32809	validation_1-rmse:0.39162
[638]	validation_0-rmse:0.32786	validation_1-rmse:0.39148
[639]	validation_0-rmse:0.32763	validation_1-rmse:0.39132
[640]	validation_0-rmse:0.32704	validation_1-rmse:0.39079
[641]	validation_0-rmse:0.32686	validation_1-rmse:0.39076
[642]	validation_0-rmse:0.32670	validation_1-rmse:0.39068
[643]	validation_0-rmse:0.32646	validation_1-rmse:0.39046
[644]	validation_0-rmse:0.32609	validation_1-rmse:0.39018
[645]	validation_0-rmse:0.32562	validation_1-rmse:0.38976
[646]	validation_0-rmse:0.32534	validation_1-rmse:0.38953
[647]	validation_0-rmse:0.32493	validation_1-rmse:0.38916
[648]	validation_0-rmse:0.32479	validation_1-rmse:0.38904
[649]	validation_0-rmse:0.32466	validation_1-rmse:0.38897
[650]	validation_0-rmse:0.32445	validation_1-rmse:0.38878
[651]	validation_0-rmse:0.32426	validation_1-rmse:0.38867
[652]	validation_0-rmse:0.32402	validation_1-rmse:0.38851
[653]	validation_0-rmse:0.32390	validation_1-rmse:0.38841
[654]	validation_0-rmse:0.32362	validation_1-rmse:0.38819
[655]	validation_0-rmse:0.32344	validation_1-rmse:0.38808
[656]	validation_0-rmse:0.32335	validation_1-rmse:0.38804
[657]	validation_0-rmse:0.32312	validation_1-rmse:0.38787
[658]	validation_0-rmse:0.32296	validation_1-rmse:0.38773
[659]	validation_0-rmse:0.32265	validation_1-rmse:0.38748
[660]	validation_0-rmse:0.32254	validation_1-rmse:0.38739
[661]	validation_0-rmse:0.32205	validation_1-rmse:0.38697
[662]	validation_0-rmse:0.32187	validation_1-rmse:0.38685
[663]	validation_0-rmse:0.32167	validation_1-rmse:0.38666
[664]	validation_0-rmse:0.32137	validation_1-rmse:0.38635
[665]	validation_0-rmse:0.32109	validation_1-rmse:0.38614
[666]	validation_0-rmse:0.32101	validation_1-rmse:0.38609
[667]	validation_0-rmse:0.32083	validation_1-rmse:0.38599
[668]	validation_0-rmse:0.32042	validation_1-rmse:0.38556
[669]	validation_0-rmse:0.32033	validation_1-rmse:0.38552
[670]	validation_0-rmse:0.32012	validation_1-rmse:0.38529
[671]	validation_0-rmse:0.32002	validation_1-rmse:0.38521
[672]	validation_0-rmse:0.31986	validation_1-rmse:0.38510
[673]	validation_0-rmse:0.31971	validation_1-rmse:0.38500
[674]	validation_0-rmse:0.31963	validation_1-rmse:0.38495
[675]	validation_0-rmse:0.31939	validation_1-rmse:0.38472
[676]	validation_0-rmse:0.31924	validation_1-rmse:0.38463
[677]	validation_0-rmse:0.31887	validation_1-rmse:0.38436
[678]	validation_0-rmse:0.31865	validation_1-rmse:0.38414
[679]	validation_0-rmse:0.31841	validation_1-rmse:0.38395
[680]	validation_0-rmse:0.31831	validation_1-rmse:0.38389
[681]	validation_0-rmse:0.31817	validation_1-rmse:0.38376
[682]	validation_0-rmse:0.31807	validation_1-rmse:0.38374
[683]	validation_0-rmse:0.31801	validation_1-rmse:0.38370
[684]	validation_0-rmse:0.31772	validation_1-rmse:0.38345
[685]	validation_0-rmse:0.31758	validation_1-rmse:0.38339
[686]	validation_0-rmse:0.31750	validation_1-rmse:0.38337
[687]	validation_0-rmse:0.31733	validation_1-rmse:0.38327
[688]	validation_0-rmse:0.31719	validation_1-rmse:0.38322
[689]	validation_0-rmse:0.31704	validation_1-rmse:0.38317
[690]	validation_0-rmse:0.31669	validation_1-rmse:0.38274
[691]	validation_0-rmse:0.31633	validation_1-rmse:0.38245
[692]	validation_0-rmse:0.31604	validation_1-rmse:0.38220
[693]	validation_0-rmse:0.31596	validation_1-rmse:0.38219
[694]	validation_0-rmse:0.31583	validation_1-rmse:0.38212
[695]	validation_0-rmse:0.31571	validation_1-rmse:0.38206
[696]	validation_0-rmse:0.31558	validation_1-rmse:0.38195
[697]	validation_0-rmse:0.31506	validation_1-rmse:0.38150
[698]	validation_0-rmse:0.31481	validation_1-rmse:0.38125
[699]	validation_0-rmse:0.31463	validation_1-rmse:0.38115
[700]	validation_0-rmse:0.31438	validation_1-rmse:0.38090
[701]	validation_0-rmse:0.31425	validation_1-rmse:0.38089
[702]	validation_0-rmse:0.31406	validation_1-rmse:0.38076
[703]	validation_0-rmse:0.31386	validation_1-rmse:0.38057
[704]	validation_0-rmse:0.31377	validation_1-rmse:0.38048
[705]	validation_0-rmse:0.31368	validation_1-rmse:0.38045
[706]	validation_0-rmse:0.31347	validation_1-rmse:0.38038
[707]	validation_0-rmse:0.31337	validation_1-rmse:0.38034
[708]	validation_0-rmse:0.31320	validation_1-rmse:0.38016
[709]	validation_0-rmse:0.31313	validation_1-rmse:0.38013
[710]	validation_0-rmse:0.31297	validation_1-rmse:0.37996
[711]	validation_0-rmse:0.31285	validation_1-rmse:0.37987
[712]	validation_0-rmse:0.31278	validation_1-rmse:0.37984
[713]	validation_0-rmse:0.31274	validation_1-rmse:0.37982
[714]	validation_0-rmse:0.31251	validation_1-rmse:0.37960
[715]	validation_0-rmse:0.31228	validation_1-rmse:0.37944
[716]	validation_0-rmse:0.31219	validation_1-rmse:0.37936
[717]	validation_0-rmse:0.31205	validation_1-rmse:0.37928
[718]	validation_0-rmse:0.31187	validation_1-rmse:0.37915
[719]	validation_0-rmse:0.31175	validation_1-rmse:0.37910
[720]	validation_0-rmse:0.31161	validation_1-rmse:0.37899
[721]	validation_0-rmse:0.31129	validation_1-rmse:0.37873
[722]	validation_0-rmse:0.31109	validation_1-rmse:0.37855
[723]	validation_0-rmse:0.31098	validation_1-rmse:0.37852
[724]	validation_0-rmse:0.31063	validation_1-rmse:0.37824
[725]	validation_0-rmse:0.31048	validation_1-rmse:0.37813
[726]	validation_0-rmse:0.31038	validation_1-rmse:0.37812
[727]	validation_0-rmse:0.31030	validation_1-rmse:0.37809
[728]	validation_0-rmse:0.31006	validation_1-rmse:0.37792
[729]	validation_0-rmse:0.30978	validation_1-rmse:0.37775
[730]	validation_0-rmse:0.30963	validation_1-rmse:0.37772
[731]	validation_0-rmse:0.30955	validation_1-rmse:0.37770
[732]	validation_0-rmse:0.30951	validation_1-rmse:0.37769
[733]	validation_0-rmse:0.30929	validation_1-rmse:0.37751
[734]	validation_0-rmse:0.30905	validation_1-rmse:0.37732
[735]	validation_0-rmse:0.30899	validation_1-rmse:0.37732
[736]	validation_0-rmse:0.30893	validation_1-rmse:0.37730
[737]	validation_0-rmse:0.30871	validation_1-rmse:0.37716
[738]	validation_0-rmse:0.30841	validation_1-rmse:0.37686
[739]	validation_0-rmse:0.30821	validation_1-rmse:0.37667
[740]	validation_0-rmse:0.30818	validation_1-rmse:0.37665
[741]	validation_0-rmse:0.30807	validation_1-rmse:0.37659
[742]	validation_0-rmse:0.30770	validation_1-rmse:0.37630
[743]	validation_0-rmse:0.30743	validation_1-rmse:0.37608
[744]	validation_0-rmse:0.30725	validation_1-rmse:0.37595
[745]	validation_0-rmse:0.30720	validation_1-rmse:0.37595
[746]	validation_0-rmse:0.30704	validation_1-rmse:0.37586
[747]	validation_0-rmse:0.30676	validation_1-rmse:0.37559
[748]	validation_0-rmse:0.30660	validation_1-rmse:0.37556
[749]	validation_0-rmse:0.30623	validation_1-rmse:0.37525
[750]	validation_0-rmse:0.30587	validation_1-rmse:0.37498
[751]	validation_0-rmse:0.30560	validation_1-rmse:0.37470
[752]	validation_0-rmse:0.30547	validation_1-rmse:0.37465
[753]	validation_0-rmse:0.30526	validation_1-rmse:0.37451
[754]	validation_0-rmse:0.30509	validation_1-rmse:0.37441
[755]	validation_0-rmse:0.30491	validation_1-rmse:0.37428
[756]	validation_0-rmse:0.30476	validation_1-rmse:0.37417
[757]	validation_0-rmse:0.30459	validation_1-rmse:0.37407
[758]	validation_0-rmse:0.30441	validation_1-rmse:0.37391
[759]	validation_0-rmse:0.30437	validation_1-rmse:0.37389
[760]	validation_0-rmse:0.30420	validation_1-rmse:0.37379
[761]	validation_0-rmse:0.30398	validation_1-rmse:0.37363
[762]	validation_0-rmse:0.30367	validation_1-rmse:0.37339
[763]	validation_0-rmse:0.30363	validation_1-rmse:0.37337
[764]	validation_0-rmse:0.30358	validation_1-rmse:0.37335
[765]	validation_0-rmse:0.30338	validation_1-rmse:0.37321
[766]	validation_0-rmse:0.30307	validation_1-rmse:0.37297
[767]	validation_0-rmse:0.30269	validation_1-rmse:0.37264
[768]	validation_0-rmse:0.30244	validation_1-rmse:0.37239
[769]	validation_0-rmse:0.30233	validation_1-rmse:0.37230
[770]	validation_0-rmse:0.30221	validation_1-rmse:0.37220
[771]	validation_0-rmse:0.30196	validation_1-rmse:0.37199
[772]	validation_0-rmse:0.30180	validation_1-rmse:0.37192
[773]	validation_0-rmse:0.30158	validation_1-rmse:0.37176
[774]	validation_0-rmse:0.30143	validation_1-rmse:0.37166
[775]	validation_0-rmse:0.30108	validation_1-rmse:0.37145
[776]	validation_0-rmse:0.30089	validation_1-rmse:0.37127
[777]	validation_0-rmse:0.30070	validation_1-rmse:0.37110
[778]	validation_0-rmse:0.30060	validation_1-rmse:0.37104
[779]	validation_0-rmse:0.30051	validation_1-rmse:0.37101
[780]	validation_0-rmse:0.30028	validation_1-rmse:0.37081
[781]	validation_0-rmse:0.30002	validation_1-rmse:0.37066
[782]	validation_0-rmse:0.29966	validation_1-rmse:0.37034
[783]	validation_0-rmse:0.29950	validation_1-rmse:0.37027
[784]	validation_0-rmse:0.29942	validation_1-rmse:0.37025
[785]	validation_0-rmse:0.29927	validation_1-rmse:0.37011
[786]	validation_0-rmse:0.29908	validation_1-rmse:0.36994
[787]	validation_0-rmse:0.29895	validation_1-rmse:0.36983
[788]	validation_0-rmse:0.29883	validation_1-rmse:0.36978
[789]	validation_0-rmse:0.29863	validation_1-rmse:0.36957
[790]	validation_0-rmse:0.29827	validation_1-rmse:0.36924
[791]	validation_0-rmse:0.29808	validation_1-rmse:0.36911
[792]	validation_0-rmse:0.29772	validation_1-rmse:0.36878
[793]	validation_0-rmse:0.29763	validation_1-rmse:0.36877
[794]	validation_0-rmse:0.29739	validation_1-rmse:0.36861
[795]	validation_0-rmse:0.29724	validation_1-rmse:0.36851
[796]	validation_0-rmse:0.29704	validation_1-rmse:0.36837
[797]	validation_0-rmse:0.29680	validation_1-rmse:0.36814
[798]	validation_0-rmse:0.29676	validation_1-rmse:0.36812
[799]	validation_0-rmse:0.29662	validation_1-rmse:0.36804
[800]	validation_0-rmse:0.29643	validation_1-rmse:0.36790
[801]	validation_0-rmse:0.29633	validation_1-rmse:0.36784
[802]	validation_0-rmse:0.29626	validation_1-rmse:0.36779
[803]	validation_0-rmse:0.29605	validation_1-rmse:0.36767
[804]	validation_0-rmse:0.29581	validation_1-rmse:0.36746
[805]	validation_0-rmse:0.29574	validation_1-rmse:0.36742
[806]	validation_0-rmse:0.29564	validation_1-rmse:0.36734
[807]	validation_0-rmse:0.29557	validation_1-rmse:0.36730
[808]	validation_0-rmse:0.29548	validation_1-rmse:0.36725
[809]	validation_0-rmse:0.29534	validation_1-rmse:0.36712
[810]	validation_0-rmse:0.29510	validation_1-rmse:0.36693
[811]	validation_0-rmse:0.29481	validation_1-rmse:0.36669
[812]	validation_0-rmse:0.29456	validation_1-rmse:0.36644
[813]	validation_0-rmse:0.29434	validation_1-rmse:0.36631
[814]	validation_0-rmse:0.29406	validation_1-rmse:0.36600
[815]	validation_0-rmse:0.29395	validation_1-rmse:0.36590
[816]	validation_0-rmse:0.29380	validation_1-rmse:0.36585
[817]	validation_0-rmse:0.29372	validation_1-rmse:0.36577
[818]	validation_0-rmse:0.29355	validation_1-rmse:0.36564
[819]	validation_0-rmse:0.29348	validation_1-rmse:0.36564
[820]	validation_0-rmse:0.29343	validation_1-rmse:0.36561
[821]	validation_0-rmse:0.29331	validation_1-rmse:0.36557
[822]	validation_0-rmse:0.29315	validation_1-rmse:0.36551
[823]	validation_0-rmse:0.29303	validation_1-rmse:0.36546
[824]	validation_0-rmse:0.29301	validation_1-rmse:0.36547
[825]	validation_0-rmse:0.29282	validation_1-rmse:0.36531
[826]	validation_0-rmse:0.29269	validation_1-rmse:0.36529
[827]	validation_0-rmse:0.29239	validation_1-rmse:0.36500
[828]	validation_0-rmse:0.29231	validation_1-rmse:0.36494
[829]	validation_0-rmse:0.29223	validation_1-rmse:0.36492
[830]	validation_0-rmse:0.29198	validation_1-rmse:0.36471
[831]	validation_0-rmse:0.29179	validation_1-rmse:0.36455
[832]	validation_0-rmse:0.29154	validation_1-rmse:0.36430
[833]	validation_0-rmse:0.29148	validation_1-rmse:0.36431
[834]	validation_0-rmse:0.29134	validation_1-rmse:0.36423
[835]	validation_0-rmse:0.29111	validation_1-rmse:0.36404
[836]	validation_0-rmse:0.29097	validation_1-rmse:0.36402
[837]	validation_0-rmse:0.29074	validation_1-rmse:0.36386
[838]	validation_0-rmse:0.29066	validation_1-rmse:0.36380
[839]	validation_0-rmse:0.29048	validation_1-rmse:0.36366
[840]	validation_0-rmse:0.29038	validation_1-rmse:0.36362
[841]	validation_0-rmse:0.29019	validation_1-rmse:0.36343
[842]	validation_0-rmse:0.28998	validation_1-rmse:0.36329
[843]	validation_0-rmse:0.28979	validation_1-rmse:0.36311
[844]	validation_0-rmse:0.28957	validation_1-rmse:0.36300
[845]	validation_0-rmse:0.28945	validation_1-rmse:0.36290
[846]	validation_0-rmse:0.28933	validation_1-rmse:0.36281
[847]	validation_0-rmse:0.28930	validation_1-rmse:0.36278
[848]	validation_0-rmse:0.28912	validation_1-rmse:0.36261
[849]	validation_0-rmse:0.28899	validation_1-rmse:0.36258
[850]	validation_0-rmse:0.28894	validation_1-rmse:0.36254
[851]	validation_0-rmse:0.28880	validation_1-rmse:0.36248
[852]	validation_0-rmse:0.28869	validation_1-rmse:0.36249
[853]	validation_0-rmse:0.28848	validation_1-rmse:0.36233
[854]	validation_0-rmse:0.28831	validation_1-rmse:0.36220
[855]	validation_0-rmse:0.28814	validation_1-rmse:0.36209
[856]	validation_0-rmse:0.28796	validation_1-rmse:0.36195
[857]	validation_0-rmse:0.28787	validation_1-rmse:0.36195
[858]	validation_0-rmse:0.28772	validation_1-rmse:0.36186
[859]	validation_0-rmse:0.28757	validation_1-rmse:0.36168
[860]	validation_0-rmse:0.28742	validation_1-rmse:0.36162
[861]	validation_0-rmse:0.28725	validation_1-rmse:0.36151
[862]	validation_0-rmse:0.28721	validation_1-rmse:0.36150
[863]	validation_0-rmse:0.28709	validation_1-rmse:0.36139
[864]	validation_0-rmse:0.28698	validation_1-rmse:0.36134
[865]	validation_0-rmse:0.28687	validation_1-rmse:0.36125
[866]	validation_0-rmse:0.28673	validation_1-rmse:0.36116
[867]	validation_0-rmse:0.28666	validation_1-rmse:0.36116
[868]	validation_0-rmse:0.28660	validation_1-rmse:0.36114
[869]	validation_0-rmse:0.28647	validation_1-rmse:0.36107
[870]	validation_0-rmse:0.28626	validation_1-rmse:0.36088
[871]	validation_0-rmse:0.28616	validation_1-rmse:0.36083
[872]	validation_0-rmse:0.28606	validation_1-rmse:0.36081
[873]	validation_0-rmse:0.28590	validation_1-rmse:0.36068
[874]	validation_0-rmse:0.28581	validation_1-rmse:0.36064
[875]	validation_0-rmse:0.28565	validation_1-rmse:0.36052
[876]	validation_0-rmse:0.28555	validation_1-rmse:0.36049
[877]	validation_0-rmse:0.28533	validation_1-rmse:0.36037
[878]	validation_0-rmse:0.28521	validation_1-rmse:0.36029
[879]	validation_0-rmse:0.28508	validation_1-rmse:0.36021
[880]	validation_0-rmse:0.28493	validation_1-rmse:0.36013
[881]	validation_0-rmse:0.28482	validation_1-rmse:0.36009
[882]	validation_0-rmse:0.28465	validation_1-rmse:0.36000
[883]	validation_0-rmse:0.28437	validation_1-rmse:0.35975
[884]	validation_0-rmse:0.28418	validation_1-rmse:0.35958
[885]	validation_0-rmse:0.28409	validation_1-rmse:0.35954
[886]	validation_0-rmse:0.28404	validation_1-rmse:0.35952
[887]	validation_0-rmse:0.28393	validation_1-rmse:0.35945
[888]	validation_0-rmse:0.28380	validation_1-rmse:0.35936
[889]	validation_0-rmse:0.28376	validation_1-rmse:0.35935
[890]	validation_0-rmse:0.28369	validation_1-rmse:0.35932
[891]	validation_0-rmse:0.28366	validation_1-rmse:0.35930
[892]	validation_0-rmse:0.28356	validation_1-rmse:0.35920
[893]	validation_0-rmse:0.28348	validation_1-rmse:0.35918
[894]	validation_0-rmse:0.28327	validation_1-rmse:0.35894
[895]	validation_0-rmse:0.28320	validation_1-rmse:0.35891
[896]	validation_0-rmse:0.28309	validation_1-rmse:0.35883
[897]	validation_0-rmse:0.28291	validation_1-rmse:0.35867
[898]	validation_0-rmse:0.28285	validation_1-rmse:0.35864
[899]	validation_0-rmse:0.28274	validation_1-rmse:0.35857
[900]	validation_0-rmse:0.28270	validation_1-rmse:0.35857
[901]	validation_0-rmse:0.28253	validation_1-rmse:0.35845
[902]	validation_0-rmse:0.28246	validation_1-rmse:0.35845
[903]	validation_0-rmse:0.28226	validation_1-rmse:0.35829
[904]	validation_0-rmse:0.28211	validation_1-rmse:0.35820
[905]	validation_0-rmse:0.28199	validation_1-rmse:0.35808
[906]	validation_0-rmse:0.28189	validation_1-rmse:0.35797
[907]	validation_0-rmse:0.28177	validation_1-rmse:0.35793
[908]	validation_0-rmse:0.28154	validation_1-rmse:0.35779
[909]	validation_0-rmse:0.28137	validation_1-rmse:0.35768
[910]	validation_0-rmse:0.28115	validation_1-rmse:0.35753
[911]	validation_0-rmse:0.28109	validation_1-rmse:0.35749
[912]	validation_0-rmse:0.28101	validation_1-rmse:0.35741
[913]	validation_0-rmse:0.28092	validation_1-rmse:0.35743
[914]	validation_0-rmse:0.28085	validation_1-rmse:0.35740
[915]	validation_0-rmse:0.28083	validation_1-rmse:0.35739
[916]	validation_0-rmse:0.28079	validation_1-rmse:0.35739
[917]	validation_0-rmse:0.28069	validation_1-rmse:0.35733
[918]	validation_0-rmse:0.28059	validation_1-rmse:0.35729
[919]	validation_0-rmse:0.28052	validation_1-rmse:0.35726
[920]	validation_0-rmse:0.28045	validation_1-rmse:0.35725
[921]	validation_0-rmse:0.28030	validation_1-rmse:0.35713
[922]	validation_0-rmse:0.28017	validation_1-rmse:0.35701
[923]	validation_0-rmse:0.27998	validation_1-rmse:0.35688
[924]	validation_0-rmse:0.27990	validation_1-rmse:0.35686
[925]	validation_0-rmse:0.27983	validation_1-rmse:0.35684
[926]	validation_0-rmse:0.27976	validation_1-rmse:0.35683
[927]	validation_0-rmse:0.27961	validation_1-rmse:0.35669
[928]	validation_0-rmse:0.27958	validation_1-rmse:0.35668
[929]	validation_0-rmse:0.27945	validation_1-rmse:0.35660
[930]	validation_0-rmse:0.27930	validation_1-rmse:0.35652
[931]	validation_0-rmse:0.27906	validation_1-rmse:0.35629
[932]	validation_0-rmse:0.27887	validation_1-rmse:0.35619
[933]	validation_0-rmse:0.27872	validation_1-rmse:0.35611
[934]	validation_0-rmse:0.27854	validation_1-rmse:0.35597
[935]	validation_0-rmse:0.27850	validation_1-rmse:0.35596
[936]	validation_0-rmse:0.27842	validation_1-rmse:0.35591
[937]	validation_0-rmse:0.27827	validation_1-rmse:0.35575
[938]	validation_0-rmse:0.27816	validation_1-rmse:0.35569
[939]	validation_0-rmse:0.27806	validation_1-rmse:0.35572
[940]	validation_0-rmse:0.27778	validation_1-rmse:0.35552
[941]	validation_0-rmse:0.27768	validation_1-rmse:0.35546
[942]	validation_0-rmse:0.27761	validation_1-rmse:0.35541
[943]	validation_0-rmse:0.27747	validation_1-rmse:0.35533
[944]	validation_0-rmse:0.27743	validation_1-rmse:0.35532
[945]	validation_0-rmse:0.27731	validation_1-rmse:0.35526
[946]	validation_0-rmse:0.27719	validation_1-rmse:0.35517
[947]	validation_0-rmse:0.27716	validation_1-rmse:0.35516
[948]	validation_0-rmse:0.27706	validation_1-rmse:0.35511
[949]	validation_0-rmse:0.27686	validation_1-rmse:0.35497
[950]	validation_0-rmse:0.27678	validation_1-rmse:0.35495
[951]	validation_0-rmse:0.27662	validation_1-rmse:0.35484
[952]	validation_0-rmse:0.27655	validation_1-rmse:0.35480
[953]	validation_0-rmse:0.27649	validation_1-rmse:0.35476
[954]	validation_0-rmse:0.27640	validation_1-rmse:0.35473
[955]	validation_0-rmse:0.27633	validation_1-rmse:0.35471
[956]	validation_0-rmse:0.27626	validation_1-rmse:0.35473
[957]	validation_0-rmse:0.27619	validation_1-rmse:0.35467
[958]	validation_0-rmse:0.27604	validation_1-rmse:0.35459
[959]	validation_0-rmse:0.27583	validation_1-rmse:0.35444
[960]	validation_0-rmse:0.27582	validation_1-rmse:0.35443
[961]	validation_0-rmse:0.27561	validation_1-rmse:0.35432
[962]	validation_0-rmse:0.27537	validation_1-rmse:0.35414
[963]	validation_0-rmse:0.27531	validation_1-rmse:0.35415
[964]	validation_0-rmse:0.27512	validation_1-rmse:0.35399
[965]	validation_0-rmse:0.27499	validation_1-rmse:0.35390
[966]	validation_0-rmse:0.27489	validation_1-rmse:0.35385
[967]	validation_0-rmse:0.27476	validation_1-rmse:0.35376
[968]	validation_0-rmse:0.27460	validation_1-rmse:0.35366
[969]	validation_0-rmse:0.27444	validation_1-rmse:0.35355
[970]	validation_0-rmse:0.27441	validation_1-rmse:0.35354
[971]	validation_0-rmse:0.27432	validation_1-rmse:0.35348
[972]	validation_0-rmse:0.27426	validation_1-rmse:0.35348
[973]	validation_0-rmse:0.27405	validation_1-rmse:0.35335
[974]	validation_0-rmse:0.27396	validation_1-rmse:0.35334
[975]	validation_0-rmse:0.27374	validation_1-rmse:0.35309
[976]	validation_0-rmse:0.27370	validation_1-rmse:0.35307
[977]	validation_0-rmse:0.27347	validation_1-rmse:0.35287
[978]	validation_0-rmse:0.27339	validation_1-rmse:0.35282
[979]	validation_0-rmse:0.27310	validation_1-rmse:0.35251
[980]	validation_0-rmse:0.27304	validation_1-rmse:0.35248
[981]	validation_0-rmse:0.27295	validation_1-rmse:0.35239
[982]	validation_0-rmse:0.27283	validation_1-rmse:0.35239
[983]	validation_0-rmse:0.27259	validation_1-rmse:0.35218
[984]	validation_0-rmse:0.27240	validation_1-rmse:0.35210
[985]	validation_0-rmse:0.27222	validation_1-rmse:0.35195
[986]	validation_0-rmse:0.27207	validation_1-rmse:0.35182
[987]	validation_0-rmse:0.27203	validation_1-rmse:0.35179
[988]	validation_0-rmse:0.27200	validation_1-rmse:0.35180
[989]	validation_0-rmse:0.27186	validation_1-rmse:0.35172
[990]	validation_0-rmse:0.27177	validation_1-rmse:0.35168
[991]	validation_0-rmse:0.27170	validation_1-rmse:0.35164
[992]	validation_0-rmse:0.27158	validation_1-rmse:0.35154
[993]	validation_0-rmse:0.27153	validation_1-rmse:0.35154
[994]	validation_0-rmse:0.27143	validation_1-rmse:0.35145
[995]	validation_0-rmse:0.27113	validation_1-rmse:0.35122
[996]	validation_0-rmse:0.27095	validation_1-rmse:0.35110
[997]	validation_0-rmse:0.27087	validation_1-rmse:0.35106
[998]	validation_0-rmse:0.27081	validation_1-rmse:0.35104
[999]	validation_0-rmse:0.27067	validation_1-rmse:0.35097
>>> Using model to predict target TS_GF1_0.04_1 in unseen test data ...
>>> Using model to calculate permutation importance based on unseen test data ...
>>> Calculating prediction scores based on predicting unseen test data of TS_GF1_0.04_1 ...
>>> Collecting results, details about training and testing can be accessed by calling .report_traintest().
>>> Done.

================================
MODEL TRAINING & TESTING RESULTS
================================

## DATA
  > target: TS_GF1_0.04_1
  > features: 16 ['TA_T1_2_1', '.TA_T1_2_1-5', '.TA_T1_2_1-4', '.TA_T1_2_1-3', '.TA_T1_2_1-2', '.TA_T1_2_1-1', '.YEAR', '.SEASON', '.MONTH', '.WEEK', '.DOY', '.HOUR', '.YEARMONTH', '.YEARDOY', '.YEARWEEK', '.RECORDNUMBER']
  > 350640 records (with missing)
  > 331134 available records for target and all features (no missing values)
  > training on 248350 records (75.0%) of 248350 features between 2005-09-09 10:15:00 and 2024-12-31 23:15:00
  > testing on 82784 unseen records (25.0%) of TS_GF1_0.04_1 between 2005-09-09 09:45:00 and 2024-12-31 23:45:00

## MODEL
  > the model was trained on training data (248350 records)
  > the model was tested on test data (82784 values)
  > estimator:  XGBRegressor(base_score=None, booster=None, callbacks=None,
             colsample_bylevel=None, colsample_bynode=None,
             colsample_bytree=None, device=None, early_stopping_rounds=50,
             enable_categorical=False, eval_metric=None, feature_types=None,
             gamma=None, grow_policy=None, importance_type=None,
             interaction_constraints=None, learning_rate=None, max_bin=None,
             max_cat_threshold=None, max_cat_to_onehot=None,
             max_delta_step=None, max_depth=None, max_leaves=None,
             min_child_weight=None, missing=nan, monotone_constraints=None,
             multi_strategy=None, n_estimators=1000, n_jobs=-1,
             num_parallel_tree=None, random_state=42, ...)
  > parameters:  {'objective': 'reg:squarederror', 'base_score': None, 'booster': None, 'callbacks': None, 'colsample_bylevel': None, 'colsample_bynode': None, 'colsample_bytree': None, 'device': None, 'early_stopping_rounds': 50, 'enable_categorical': False, 'eval_metric': None, 'feature_types': None, 'gamma': None, 'grow_policy': None, 'importance_type': None, 'interaction_constraints': None, 'learning_rate': None, 'max_bin': None, 'max_cat_threshold': None, 'max_cat_to_onehot': None, 'max_delta_step': None, 'max_depth': None, 'max_leaves': None, 'min_child_weight': None, 'missing': nan, 'monotone_constraints': None, 'multi_strategy': None, 'n_estimators': 1000, 'n_jobs': -1, 'num_parallel_tree': None, 'random_state': 42, 'reg_alpha': None, 'reg_lambda': None, 'sampling_method': None, 'scale_pos_weight': None, 'subsample': None, 'tree_method': None, 'validate_parameters': None, 'verbosity': None}
  > number of features used in model:  16
  > names of features used in model:  ['TA_T1_2_1', '.TA_T1_2_1-5', '.TA_T1_2_1-4', '.TA_T1_2_1-3', '.TA_T1_2_1-2', '.TA_T1_2_1-1', '.YEAR', '.SEASON', '.MONTH', '.WEEK', '.DOY', '.HOUR', '.YEARMONTH', '.YEARDOY', '.YEARWEEK', '.RECORDNUMBER']

## FEATURE IMPORTANCES
  > feature importances were calculated based on unseen test data of TS_GF1_0.04_1 (82784 records).
  > feature importances are showing permutation importances from 10 repeats

               PERM_IMPORTANCE   PERM_SD
.DOY                  0.395893  0.001807
.TA_T1_2_1-5          0.065700  0.000251
.YEARDOY              0.043202  0.000162
.WEEK                 0.039556  0.000177
TA_T1_2_1             0.037562  0.000179
.RECORDNUMBER         0.037157  0.000162
.YEARMONTH            0.035749  0.000180
.YEARWEEK             0.019466  0.000107
.SEASON               0.013684  0.000143
.TA_T1_2_1-3          0.012897  0.000093
.YEAR                 0.012465  0.000066
.TA_T1_2_1-4          0.010632  0.000052
.TA_T1_2_1-2          0.008461  0.000063
.TA_T1_2_1-1          0.008454  0.000060
.HOUR                 0.007350  0.000043
.MONTH                0.000629  0.000007


## MODEL SCORES
  All scores were calculated based on unseen test data (82784 records).
  > MAE:  0.2601240161563333 (mean absolute error)
  > MedAE:  0.19719306516560753 (median absolute error)
  > MSE:  0.12317727164177596 (mean squared error)
  > RMSE:  0.3509661972922406 (root mean squared error)
  > MAXE:  4.028560814412433 (max error)
  > MAPE:  0.047 (mean absolute percentage error)
  > R2:  0.9971875143076765


Gap-filling using final model ...
>>> Using final model on all data to predict target TS_GF1_0.04_1 ...
>>> Using final model on all data to calculate permutation importance ...
>>> Calculating prediction scores based on all data predicting TS_GF1_0.04_1 ...
>>> Predicting target TS_GF1_0.04_1 where all features are available ... predicted 350640 records.
>>> Collecting results for final model ...
>>> Filling 19506 missing records in target with predictions from final model ...
>>> Storing gap-filled time series in variable TS_GF1_0.04_1_gfXG ...
>>> Restoring original timestamp in results ...
>>> Combining predictions from full model and fallback model ...

===================
GAP-FILLING RESULTS
===================

Model scores and feature importances were calculated from high-quality predicted targets (19506 values, TS_GF1_0.04_1_gfXG where flag=1) in comparison to observed targets (331134 values, TS_GF1_0.04_1).

## TARGET
- first timestamp:  2005-01-01 00:15:00
- last timestamp:  2024-12-31 23:45:00
- potential number of values: 350640 values)
- target column (observed):  TS_GF1_0.04_1
- missing records (observed):  19506 (cross-check from flag: 19506)
- target column (gap-filled):  TS_GF1_0.04_1_gfXG  (350640 values)
- missing records (gap-filled):  0
- gap-filling flag: FLAG_TS_GF1_0.04_1_gfXG_ISFILLED
  > flag 0 ... observed targets (331134 values)
  > flag 1 ... targets gap-filled with high-quality, all features available (19506 values)
  > flag 2 ... targets gap-filled with fallback (0 values)

## FEATURE IMPORTANCES
- names of features used in model:  ['.DOY', '.TA_T1_2_1-5', '.YEARDOY', '.WEEK', 'TA_T1_2_1', '.RECORDNUMBER', '.YEARMONTH', '.YEARWEEK', '.SEASON', '.TA_T1_2_1-3', '.YEAR', '.TA_T1_2_1-4', '.TA_T1_2_1-2', '.TA_T1_2_1-1', '.HOUR', '.MONTH']
- number of features used in model:  16
- permutation importances were calculated from 10 repeats.

               PERM_IMPORTANCE   PERM_SD
.DOY                  0.395398  0.000607
.TA_T1_2_1-5          0.066163  0.000188
.YEARDOY              0.043318  0.000141
.WEEK                 0.039847  0.000104
TA_T1_2_1             0.038235  0.000162
.RECORDNUMBER         0.037495  0.000046
.YEARMONTH            0.036054  0.000092
.YEARWEEK             0.019466  0.000045
.SEASON               0.013816  0.000104
.TA_T1_2_1-3          0.013220  0.000064
.YEAR                 0.012467  0.000032
.TA_T1_2_1-4          0.010995  0.000049
.TA_T1_2_1-2          0.008683  0.000029
.TA_T1_2_1-1          0.008673  0.000026
.HOUR                 0.007537  0.000037
.MONTH                0.000633  0.000002

## MODEL
The model was trained on a training set with test size 25.00%.
- estimator:  XGBRegressor(base_score=None, booster=None, callbacks=None,
             colsample_bylevel=None, colsample_bynode=None,
             colsample_bytree=None, device=None, early_stopping_rounds=50,
             enable_categorical=False, eval_metric=None, feature_types=None,
             gamma=None, grow_policy=None, importance_type=None,
             interaction_constraints=None, learning_rate=None, max_bin=None,
             max_cat_threshold=None, max_cat_to_onehot=None,
             max_delta_step=None, max_depth=None, max_leaves=None,
             min_child_weight=None, missing=nan, monotone_constraints=None,
             multi_strategy=None, n_estimators=1000, n_jobs=-1,
             num_parallel_tree=None, random_state=42, ...)
- parameters:  {'objective': 'reg:squarederror', 'base_score': None, 'booster': None, 'callbacks': None, 'colsample_bylevel': None, 'colsample_bynode': None, 'colsample_bytree': None, 'device': None, 'early_stopping_rounds': 50, 'enable_categorical': False, 'eval_metric': None, 'feature_types': None, 'gamma': None, 'grow_policy': None, 'importance_type': None, 'interaction_constraints': None, 'learning_rate': None, 'max_bin': None, 'max_cat_threshold': None, 'max_cat_to_onehot': None, 'max_delta_step': None, 'max_depth': None, 'max_leaves': None, 'min_child_weight': None, 'missing': nan, 'monotone_constraints': None, 'multi_strategy': None, 'n_estimators': 1000, 'n_jobs': -1, 'num_parallel_tree': None, 'random_state': 42, 'reg_alpha': None, 'reg_lambda': None, 'sampling_method': None, 'scale_pos_weight': None, 'subsample': None, 'tree_method': None, 'validate_parameters': None, 'verbosity': None}

## MODEL SCORES
- MAE:  0.21800864863021835 (mean absolute error)
- MedAE:  0.16619198131469703 (median absolute error)
- MSE:  0.08573985058123688 (mean squared error)
- RMSE:  0.29281367895171306 (root mean squared error)
- MAXE:  4.028560814412433 (max error)
- MAPE:  0.045 (mean absolute percentage error)
- R2:  0.9980459938565359
../../_images/e7957926be195aa98323c7da19dc9e8185103268e8a13a1d0748878ba09ae967.png ../../_images/6ddb7710d8bb20b1efb65fde2f88d31d140dd70175c32ddc0366e809b0d1fd1e.png

Fill TS_GF1_0.15_1#

TARGET_COL = 'TS_GF1_0.15_1'
TARGET_GAPFILLED_COL = f'{TARGET_COL}_gfXG'
FLAG_GAPFILLED_COL = f'FLAG_{TARGET_GAPFILLED_COL}_ISFILLED'

# Dataframe for gap-filling
_df = pd.DataFrame()
_df[TARGET_COL] = df[TARGET_COL].copy()
_df['TS_GF1_0.04_1_gfXG'] = df['TS_GF1_0.04_1_gfXG'].copy()

# XGBoost
xgb = XGBoostTS(
    input_df=_df,
    target_col=TARGET_COL,
    features_lag=[-10, -1],
    features_lag_exclude_cols=None,
    perm_n_repeats=10,
    include_timestamp_as_features=True,
    add_continuous_record_number=True,
    n_estimators=1000,
    random_state=42,
    early_stopping_rounds=50,
    n_jobs=-1
)
xgb.trainmodel(showplot_scores=False, showplot_importance=False)
xgb.report_traintest()
xgb.fillgaps(showplot_scores=False, showplot_importance=False)
xgb.report_gapfilling()
results = xgb.gapfilling_df_

# Add results to main data
df = pd.concat([df, results[[TARGET_GAPFILLED_COL, FLAG_GAPFILLED_COL]]], axis=1)

# Plot
plotdf = df[[TARGET_COL, TARGET_GAPFILLED_COL, FLAG_GAPFILLED_COL]].copy()
plotdf.plot(x_compat=True, title=TARGET_COL, subplots=True, figsize=(20, 6));
locs = (plotdf.index.year == 2011) & (plotdf.index.month == 8)
plotdf[locs].plot(x_compat=True, title=TARGET_COL, subplots=True, figsize=(20, 6));
Adding new data columns ...
++ Added new columns with timestamp info: ['.YEAR', '.SEASON', '.MONTH', '.WEEK', '.DOY', '.HOUR', '.YEARMONTH', '.YEARDOY', '.YEARWEEK'] 
++ Added new column .RECORDNUMBER with record numbers from 1 to 350640.

Training final model ...
>>> Training model <class 'xgboost.sklearn.XGBRegressor'> based on data between 2005-09-09 10:15:00 and 2024-12-31 23:45:00 ...
>>> Fitting model to training data ...
[0]	validation_0-rmse:4.37232	validation_1-rmse:4.37077
[1]	validation_0-rmse:3.10113	validation_1-rmse:3.10008
[2]	validation_0-rmse:2.21736	validation_1-rmse:2.21684
[3]	validation_0-rmse:1.60544	validation_1-rmse:1.60533
[4]	validation_0-rmse:1.18834	validation_1-rmse:1.18870
[5]	validation_0-rmse:0.90868	validation_1-rmse:0.90974
[6]	validation_0-rmse:0.72410	validation_1-rmse:0.72602
[7]	validation_0-rmse:0.60477	validation_1-rmse:0.60718
[8]	validation_0-rmse:0.52486	validation_1-rmse:0.52731
[9]	validation_0-rmse:0.47675	validation_1-rmse:0.47987
[10]	validation_0-rmse:0.44742	validation_1-rmse:0.45064
[11]	validation_0-rmse:0.42496	validation_1-rmse:0.42844
[12]	validation_0-rmse:0.40834	validation_1-rmse:0.41165
[13]	validation_0-rmse:0.39592	validation_1-rmse:0.39958
[14]	validation_0-rmse:0.38581	validation_1-rmse:0.38956
[15]	validation_0-rmse:0.37783	validation_1-rmse:0.38162
[16]	validation_0-rmse:0.37080	validation_1-rmse:0.37443
[17]	validation_0-rmse:0.36567	validation_1-rmse:0.36924
[18]	validation_0-rmse:0.36188	validation_1-rmse:0.36550
[19]	validation_0-rmse:0.35578	validation_1-rmse:0.35951
[20]	validation_0-rmse:0.35176	validation_1-rmse:0.35565
[21]	validation_0-rmse:0.34971	validation_1-rmse:0.35382
[22]	validation_0-rmse:0.34591	validation_1-rmse:0.34987
[23]	validation_0-rmse:0.34288	validation_1-rmse:0.34673
[24]	validation_0-rmse:0.33998	validation_1-rmse:0.34383
[25]	validation_0-rmse:0.33667	validation_1-rmse:0.34073
[26]	validation_0-rmse:0.33451	validation_1-rmse:0.33877
[27]	validation_0-rmse:0.33256	validation_1-rmse:0.33695
[28]	validation_0-rmse:0.32976	validation_1-rmse:0.33411
[29]	validation_0-rmse:0.32808	validation_1-rmse:0.33246
[30]	validation_0-rmse:0.32616	validation_1-rmse:0.33077
[31]	validation_0-rmse:0.32300	validation_1-rmse:0.32763
[32]	validation_0-rmse:0.32013	validation_1-rmse:0.32497
[33]	validation_0-rmse:0.31653	validation_1-rmse:0.32138
[34]	validation_0-rmse:0.31441	validation_1-rmse:0.31929
[35]	validation_0-rmse:0.31327	validation_1-rmse:0.31814
[36]	validation_0-rmse:0.31116	validation_1-rmse:0.31604
[37]	validation_0-rmse:0.30985	validation_1-rmse:0.31486
[38]	validation_0-rmse:0.30709	validation_1-rmse:0.31209
[39]	validation_0-rmse:0.30597	validation_1-rmse:0.31113
[40]	validation_0-rmse:0.30434	validation_1-rmse:0.30960
[41]	validation_0-rmse:0.30315	validation_1-rmse:0.30844
[42]	validation_0-rmse:0.30093	validation_1-rmse:0.30613
[43]	validation_0-rmse:0.29979	validation_1-rmse:0.30512
[44]	validation_0-rmse:0.29914	validation_1-rmse:0.30451
[45]	validation_0-rmse:0.29665	validation_1-rmse:0.30196
[46]	validation_0-rmse:0.29444	validation_1-rmse:0.29985
[47]	validation_0-rmse:0.29337	validation_1-rmse:0.29885
[48]	validation_0-rmse:0.29182	validation_1-rmse:0.29742
[49]	validation_0-rmse:0.29065	validation_1-rmse:0.29637
[50]	validation_0-rmse:0.28934	validation_1-rmse:0.29508
[51]	validation_0-rmse:0.28796	validation_1-rmse:0.29388
[52]	validation_0-rmse:0.28612	validation_1-rmse:0.29221
[53]	validation_0-rmse:0.28519	validation_1-rmse:0.29135
[54]	validation_0-rmse:0.28443	validation_1-rmse:0.29073
[55]	validation_0-rmse:0.28263	validation_1-rmse:0.28886
[56]	validation_0-rmse:0.28098	validation_1-rmse:0.28726
[57]	validation_0-rmse:0.27992	validation_1-rmse:0.28622
[58]	validation_0-rmse:0.27858	validation_1-rmse:0.28495
[59]	validation_0-rmse:0.27775	validation_1-rmse:0.28418
[60]	validation_0-rmse:0.27636	validation_1-rmse:0.28279
[61]	validation_0-rmse:0.27502	validation_1-rmse:0.28139
[62]	validation_0-rmse:0.27431	validation_1-rmse:0.28073
[63]	validation_0-rmse:0.27280	validation_1-rmse:0.27939
[64]	validation_0-rmse:0.27177	validation_1-rmse:0.27835
[65]	validation_0-rmse:0.27043	validation_1-rmse:0.27713
[66]	validation_0-rmse:0.26922	validation_1-rmse:0.27606
[67]	validation_0-rmse:0.26854	validation_1-rmse:0.27542
[68]	validation_0-rmse:0.26781	validation_1-rmse:0.27475
[69]	validation_0-rmse:0.26686	validation_1-rmse:0.27384
[70]	validation_0-rmse:0.26610	validation_1-rmse:0.27313
[71]	validation_0-rmse:0.26493	validation_1-rmse:0.27198
[72]	validation_0-rmse:0.26402	validation_1-rmse:0.27107
[73]	validation_0-rmse:0.26351	validation_1-rmse:0.27062
[74]	validation_0-rmse:0.26262	validation_1-rmse:0.26981
[75]	validation_0-rmse:0.26157	validation_1-rmse:0.26875
[76]	validation_0-rmse:0.26075	validation_1-rmse:0.26795
[77]	validation_0-rmse:0.26002	validation_1-rmse:0.26722
[78]	validation_0-rmse:0.25870	validation_1-rmse:0.26594
[79]	validation_0-rmse:0.25769	validation_1-rmse:0.26480
[80]	validation_0-rmse:0.25700	validation_1-rmse:0.26421
[81]	validation_0-rmse:0.25629	validation_1-rmse:0.26346
[82]	validation_0-rmse:0.25518	validation_1-rmse:0.26244
[83]	validation_0-rmse:0.25366	validation_1-rmse:0.26103
[84]	validation_0-rmse:0.25342	validation_1-rmse:0.26087
[85]	validation_0-rmse:0.25238	validation_1-rmse:0.25984
[86]	validation_0-rmse:0.25114	validation_1-rmse:0.25863
[87]	validation_0-rmse:0.25022	validation_1-rmse:0.25767
[88]	validation_0-rmse:0.24973	validation_1-rmse:0.25724
[89]	validation_0-rmse:0.24910	validation_1-rmse:0.25663
[90]	validation_0-rmse:0.24842	validation_1-rmse:0.25605
[91]	validation_0-rmse:0.24726	validation_1-rmse:0.25495
[92]	validation_0-rmse:0.24686	validation_1-rmse:0.25461
[93]	validation_0-rmse:0.24595	validation_1-rmse:0.25370
[94]	validation_0-rmse:0.24510	validation_1-rmse:0.25285
[95]	validation_0-rmse:0.24434	validation_1-rmse:0.25218
[96]	validation_0-rmse:0.24382	validation_1-rmse:0.25175
[97]	validation_0-rmse:0.24309	validation_1-rmse:0.25112
[98]	validation_0-rmse:0.24268	validation_1-rmse:0.25085
[99]	validation_0-rmse:0.24154	validation_1-rmse:0.24969
[100]	validation_0-rmse:0.24088	validation_1-rmse:0.24914
[101]	validation_0-rmse:0.23969	validation_1-rmse:0.24804
[102]	validation_0-rmse:0.23885	validation_1-rmse:0.24729
[103]	validation_0-rmse:0.23848	validation_1-rmse:0.24694
[104]	validation_0-rmse:0.23823	validation_1-rmse:0.24669
[105]	validation_0-rmse:0.23729	validation_1-rmse:0.24584
[106]	validation_0-rmse:0.23681	validation_1-rmse:0.24541
[107]	validation_0-rmse:0.23580	validation_1-rmse:0.24454
[108]	validation_0-rmse:0.23497	validation_1-rmse:0.24373
[109]	validation_0-rmse:0.23416	validation_1-rmse:0.24301
[110]	validation_0-rmse:0.23352	validation_1-rmse:0.24237
[111]	validation_0-rmse:0.23308	validation_1-rmse:0.24201
[112]	validation_0-rmse:0.23287	validation_1-rmse:0.24181
[113]	validation_0-rmse:0.23269	validation_1-rmse:0.24169
[114]	validation_0-rmse:0.23185	validation_1-rmse:0.24088
[115]	validation_0-rmse:0.23116	validation_1-rmse:0.24019
[116]	validation_0-rmse:0.23060	validation_1-rmse:0.23975
[117]	validation_0-rmse:0.22970	validation_1-rmse:0.23888
[118]	validation_0-rmse:0.22890	validation_1-rmse:0.23812
[119]	validation_0-rmse:0.22830	validation_1-rmse:0.23758
[120]	validation_0-rmse:0.22805	validation_1-rmse:0.23734
[121]	validation_0-rmse:0.22750	validation_1-rmse:0.23679
[122]	validation_0-rmse:0.22713	validation_1-rmse:0.23648
[123]	validation_0-rmse:0.22619	validation_1-rmse:0.23559
[124]	validation_0-rmse:0.22584	validation_1-rmse:0.23533
[125]	validation_0-rmse:0.22542	validation_1-rmse:0.23496
[126]	validation_0-rmse:0.22494	validation_1-rmse:0.23461
[127]	validation_0-rmse:0.22408	validation_1-rmse:0.23379
[128]	validation_0-rmse:0.22380	validation_1-rmse:0.23359
[129]	validation_0-rmse:0.22346	validation_1-rmse:0.23336
[130]	validation_0-rmse:0.22312	validation_1-rmse:0.23301
[131]	validation_0-rmse:0.22241	validation_1-rmse:0.23241
[132]	validation_0-rmse:0.22186	validation_1-rmse:0.23192
[133]	validation_0-rmse:0.22082	validation_1-rmse:0.23091
[134]	validation_0-rmse:0.22041	validation_1-rmse:0.23057
[135]	validation_0-rmse:0.21983	validation_1-rmse:0.23003
[136]	validation_0-rmse:0.21932	validation_1-rmse:0.22951
[137]	validation_0-rmse:0.21859	validation_1-rmse:0.22884
[138]	validation_0-rmse:0.21788	validation_1-rmse:0.22817
[139]	validation_0-rmse:0.21753	validation_1-rmse:0.22787
[140]	validation_0-rmse:0.21702	validation_1-rmse:0.22741
[141]	validation_0-rmse:0.21637	validation_1-rmse:0.22678
[142]	validation_0-rmse:0.21611	validation_1-rmse:0.22651
[143]	validation_0-rmse:0.21572	validation_1-rmse:0.22619
[144]	validation_0-rmse:0.21492	validation_1-rmse:0.22545
[145]	validation_0-rmse:0.21466	validation_1-rmse:0.22528
[146]	validation_0-rmse:0.21419	validation_1-rmse:0.22493
[147]	validation_0-rmse:0.21362	validation_1-rmse:0.22435
[148]	validation_0-rmse:0.21312	validation_1-rmse:0.22388
[149]	validation_0-rmse:0.21276	validation_1-rmse:0.22365
[150]	validation_0-rmse:0.21238	validation_1-rmse:0.22326
[151]	validation_0-rmse:0.21198	validation_1-rmse:0.22294
[152]	validation_0-rmse:0.21159	validation_1-rmse:0.22258
[153]	validation_0-rmse:0.21147	validation_1-rmse:0.22245
[154]	validation_0-rmse:0.21106	validation_1-rmse:0.22212
[155]	validation_0-rmse:0.21061	validation_1-rmse:0.22170
[156]	validation_0-rmse:0.21041	validation_1-rmse:0.22160
[157]	validation_0-rmse:0.20961	validation_1-rmse:0.22086
[158]	validation_0-rmse:0.20932	validation_1-rmse:0.22058
[159]	validation_0-rmse:0.20907	validation_1-rmse:0.22033
[160]	validation_0-rmse:0.20865	validation_1-rmse:0.22003
[161]	validation_0-rmse:0.20830	validation_1-rmse:0.21973
[162]	validation_0-rmse:0.20750	validation_1-rmse:0.21901
[163]	validation_0-rmse:0.20724	validation_1-rmse:0.21882
[164]	validation_0-rmse:0.20682	validation_1-rmse:0.21844
[165]	validation_0-rmse:0.20645	validation_1-rmse:0.21808
[166]	validation_0-rmse:0.20599	validation_1-rmse:0.21765
[167]	validation_0-rmse:0.20575	validation_1-rmse:0.21752
[168]	validation_0-rmse:0.20533	validation_1-rmse:0.21714
[169]	validation_0-rmse:0.20440	validation_1-rmse:0.21634
[170]	validation_0-rmse:0.20387	validation_1-rmse:0.21582
[171]	validation_0-rmse:0.20339	validation_1-rmse:0.21542
[172]	validation_0-rmse:0.20280	validation_1-rmse:0.21476
[173]	validation_0-rmse:0.20239	validation_1-rmse:0.21440
[174]	validation_0-rmse:0.20198	validation_1-rmse:0.21404
[175]	validation_0-rmse:0.20178	validation_1-rmse:0.21393
[176]	validation_0-rmse:0.20115	validation_1-rmse:0.21332
[177]	validation_0-rmse:0.20093	validation_1-rmse:0.21314
[178]	validation_0-rmse:0.20074	validation_1-rmse:0.21302
[179]	validation_0-rmse:0.20016	validation_1-rmse:0.21243
[180]	validation_0-rmse:0.19979	validation_1-rmse:0.21210
[181]	validation_0-rmse:0.19929	validation_1-rmse:0.21163
[182]	validation_0-rmse:0.19894	validation_1-rmse:0.21134
[183]	validation_0-rmse:0.19842	validation_1-rmse:0.21090
[184]	validation_0-rmse:0.19804	validation_1-rmse:0.21046
[185]	validation_0-rmse:0.19767	validation_1-rmse:0.21016
[186]	validation_0-rmse:0.19701	validation_1-rmse:0.20954
[187]	validation_0-rmse:0.19672	validation_1-rmse:0.20936
[188]	validation_0-rmse:0.19634	validation_1-rmse:0.20899
[189]	validation_0-rmse:0.19595	validation_1-rmse:0.20863
[190]	validation_0-rmse:0.19566	validation_1-rmse:0.20835
[191]	validation_0-rmse:0.19518	validation_1-rmse:0.20792
[192]	validation_0-rmse:0.19479	validation_1-rmse:0.20756
[193]	validation_0-rmse:0.19460	validation_1-rmse:0.20745
[194]	validation_0-rmse:0.19395	validation_1-rmse:0.20686
[195]	validation_0-rmse:0.19368	validation_1-rmse:0.20666
[196]	validation_0-rmse:0.19319	validation_1-rmse:0.20619
[197]	validation_0-rmse:0.19308	validation_1-rmse:0.20611
[198]	validation_0-rmse:0.19279	validation_1-rmse:0.20585
[199]	validation_0-rmse:0.19252	validation_1-rmse:0.20560
[200]	validation_0-rmse:0.19216	validation_1-rmse:0.20523
[201]	validation_0-rmse:0.19170	validation_1-rmse:0.20482
[202]	validation_0-rmse:0.19133	validation_1-rmse:0.20448
[203]	validation_0-rmse:0.19111	validation_1-rmse:0.20429
[204]	validation_0-rmse:0.19077	validation_1-rmse:0.20399
[205]	validation_0-rmse:0.19045	validation_1-rmse:0.20372
[206]	validation_0-rmse:0.19029	validation_1-rmse:0.20357
[207]	validation_0-rmse:0.19011	validation_1-rmse:0.20343
[208]	validation_0-rmse:0.18983	validation_1-rmse:0.20327
[209]	validation_0-rmse:0.18941	validation_1-rmse:0.20291
[210]	validation_0-rmse:0.18880	validation_1-rmse:0.20230
[211]	validation_0-rmse:0.18855	validation_1-rmse:0.20209
[212]	validation_0-rmse:0.18841	validation_1-rmse:0.20200
[213]	validation_0-rmse:0.18807	validation_1-rmse:0.20167
[214]	validation_0-rmse:0.18780	validation_1-rmse:0.20149
[215]	validation_0-rmse:0.18735	validation_1-rmse:0.20109
[216]	validation_0-rmse:0.18716	validation_1-rmse:0.20095
[217]	validation_0-rmse:0.18682	validation_1-rmse:0.20067
[218]	validation_0-rmse:0.18636	validation_1-rmse:0.20022
[219]	validation_0-rmse:0.18608	validation_1-rmse:0.19997
[220]	validation_0-rmse:0.18571	validation_1-rmse:0.19967
[221]	validation_0-rmse:0.18543	validation_1-rmse:0.19944
[222]	validation_0-rmse:0.18508	validation_1-rmse:0.19916
[223]	validation_0-rmse:0.18496	validation_1-rmse:0.19907
[224]	validation_0-rmse:0.18490	validation_1-rmse:0.19901
[225]	validation_0-rmse:0.18459	validation_1-rmse:0.19875
[226]	validation_0-rmse:0.18425	validation_1-rmse:0.19841
[227]	validation_0-rmse:0.18420	validation_1-rmse:0.19836
[228]	validation_0-rmse:0.18377	validation_1-rmse:0.19794
[229]	validation_0-rmse:0.18359	validation_1-rmse:0.19776
[230]	validation_0-rmse:0.18321	validation_1-rmse:0.19743
[231]	validation_0-rmse:0.18276	validation_1-rmse:0.19700
[232]	validation_0-rmse:0.18246	validation_1-rmse:0.19671
[233]	validation_0-rmse:0.18205	validation_1-rmse:0.19633
[234]	validation_0-rmse:0.18152	validation_1-rmse:0.19584
[235]	validation_0-rmse:0.18110	validation_1-rmse:0.19546
[236]	validation_0-rmse:0.18090	validation_1-rmse:0.19533
[237]	validation_0-rmse:0.18058	validation_1-rmse:0.19507
[238]	validation_0-rmse:0.18007	validation_1-rmse:0.19459
[239]	validation_0-rmse:0.17968	validation_1-rmse:0.19426
[240]	validation_0-rmse:0.17952	validation_1-rmse:0.19414
[241]	validation_0-rmse:0.17918	validation_1-rmse:0.19382
[242]	validation_0-rmse:0.17885	validation_1-rmse:0.19351
[243]	validation_0-rmse:0.17851	validation_1-rmse:0.19323
[244]	validation_0-rmse:0.17819	validation_1-rmse:0.19298
[245]	validation_0-rmse:0.17806	validation_1-rmse:0.19288
[246]	validation_0-rmse:0.17787	validation_1-rmse:0.19270
[247]	validation_0-rmse:0.17754	validation_1-rmse:0.19241
[248]	validation_0-rmse:0.17715	validation_1-rmse:0.19212
[249]	validation_0-rmse:0.17696	validation_1-rmse:0.19199
[250]	validation_0-rmse:0.17685	validation_1-rmse:0.19193
[251]	validation_0-rmse:0.17660	validation_1-rmse:0.19171
[252]	validation_0-rmse:0.17631	validation_1-rmse:0.19151
[253]	validation_0-rmse:0.17608	validation_1-rmse:0.19128
[254]	validation_0-rmse:0.17564	validation_1-rmse:0.19089
[255]	validation_0-rmse:0.17540	validation_1-rmse:0.19068
[256]	validation_0-rmse:0.17526	validation_1-rmse:0.19058
[257]	validation_0-rmse:0.17487	validation_1-rmse:0.19024
[258]	validation_0-rmse:0.17468	validation_1-rmse:0.19015
[259]	validation_0-rmse:0.17439	validation_1-rmse:0.18992
[260]	validation_0-rmse:0.17427	validation_1-rmse:0.18984
[261]	validation_0-rmse:0.17401	validation_1-rmse:0.18960
[262]	validation_0-rmse:0.17353	validation_1-rmse:0.18916
[263]	validation_0-rmse:0.17344	validation_1-rmse:0.18909
[264]	validation_0-rmse:0.17324	validation_1-rmse:0.18894
[265]	validation_0-rmse:0.17269	validation_1-rmse:0.18846
[266]	validation_0-rmse:0.17248	validation_1-rmse:0.18831
[267]	validation_0-rmse:0.17237	validation_1-rmse:0.18826
[268]	validation_0-rmse:0.17220	validation_1-rmse:0.18811
[269]	validation_0-rmse:0.17193	validation_1-rmse:0.18788
[270]	validation_0-rmse:0.17164	validation_1-rmse:0.18764
[271]	validation_0-rmse:0.17150	validation_1-rmse:0.18754
[272]	validation_0-rmse:0.17122	validation_1-rmse:0.18731
[273]	validation_0-rmse:0.17103	validation_1-rmse:0.18716
[274]	validation_0-rmse:0.17093	validation_1-rmse:0.18709
[275]	validation_0-rmse:0.17081	validation_1-rmse:0.18697
[276]	validation_0-rmse:0.17038	validation_1-rmse:0.18656
[277]	validation_0-rmse:0.17002	validation_1-rmse:0.18622
[278]	validation_0-rmse:0.16974	validation_1-rmse:0.18598
[279]	validation_0-rmse:0.16945	validation_1-rmse:0.18571
[280]	validation_0-rmse:0.16917	validation_1-rmse:0.18546
[281]	validation_0-rmse:0.16897	validation_1-rmse:0.18532
[282]	validation_0-rmse:0.16880	validation_1-rmse:0.18517
[283]	validation_0-rmse:0.16848	validation_1-rmse:0.18486
[284]	validation_0-rmse:0.16814	validation_1-rmse:0.18457
[285]	validation_0-rmse:0.16810	validation_1-rmse:0.18452
[286]	validation_0-rmse:0.16777	validation_1-rmse:0.18419
[287]	validation_0-rmse:0.16764	validation_1-rmse:0.18406
[288]	validation_0-rmse:0.16733	validation_1-rmse:0.18383
[289]	validation_0-rmse:0.16719	validation_1-rmse:0.18378
[290]	validation_0-rmse:0.16702	validation_1-rmse:0.18365
[291]	validation_0-rmse:0.16679	validation_1-rmse:0.18344
[292]	validation_0-rmse:0.16658	validation_1-rmse:0.18329
[293]	validation_0-rmse:0.16615	validation_1-rmse:0.18293
[294]	validation_0-rmse:0.16584	validation_1-rmse:0.18270
[295]	validation_0-rmse:0.16551	validation_1-rmse:0.18242
[296]	validation_0-rmse:0.16540	validation_1-rmse:0.18237
[297]	validation_0-rmse:0.16516	validation_1-rmse:0.18221
[298]	validation_0-rmse:0.16490	validation_1-rmse:0.18199
[299]	validation_0-rmse:0.16465	validation_1-rmse:0.18177
[300]	validation_0-rmse:0.16440	validation_1-rmse:0.18156
[301]	validation_0-rmse:0.16418	validation_1-rmse:0.18135
[302]	validation_0-rmse:0.16379	validation_1-rmse:0.18102
[303]	validation_0-rmse:0.16357	validation_1-rmse:0.18083
[304]	validation_0-rmse:0.16348	validation_1-rmse:0.18076
[305]	validation_0-rmse:0.16334	validation_1-rmse:0.18063
[306]	validation_0-rmse:0.16321	validation_1-rmse:0.18052
[307]	validation_0-rmse:0.16310	validation_1-rmse:0.18044
[308]	validation_0-rmse:0.16288	validation_1-rmse:0.18023
[309]	validation_0-rmse:0.16266	validation_1-rmse:0.18005
[310]	validation_0-rmse:0.16252	validation_1-rmse:0.17997
[311]	validation_0-rmse:0.16226	validation_1-rmse:0.17975
[312]	validation_0-rmse:0.16213	validation_1-rmse:0.17964
[313]	validation_0-rmse:0.16192	validation_1-rmse:0.17944
[314]	validation_0-rmse:0.16183	validation_1-rmse:0.17940
[315]	validation_0-rmse:0.16170	validation_1-rmse:0.17932
[316]	validation_0-rmse:0.16166	validation_1-rmse:0.17929
[317]	validation_0-rmse:0.16118	validation_1-rmse:0.17887
[318]	validation_0-rmse:0.16103	validation_1-rmse:0.17873
[319]	validation_0-rmse:0.16073	validation_1-rmse:0.17847
[320]	validation_0-rmse:0.16049	validation_1-rmse:0.17824
[321]	validation_0-rmse:0.16037	validation_1-rmse:0.17815
[322]	validation_0-rmse:0.16024	validation_1-rmse:0.17805
[323]	validation_0-rmse:0.15986	validation_1-rmse:0.17772
[324]	validation_0-rmse:0.15967	validation_1-rmse:0.17753
[325]	validation_0-rmse:0.15938	validation_1-rmse:0.17722
[326]	validation_0-rmse:0.15916	validation_1-rmse:0.17701
[327]	validation_0-rmse:0.15891	validation_1-rmse:0.17681
[328]	validation_0-rmse:0.15869	validation_1-rmse:0.17661
[329]	validation_0-rmse:0.15833	validation_1-rmse:0.17624
[330]	validation_0-rmse:0.15819	validation_1-rmse:0.17610
[331]	validation_0-rmse:0.15799	validation_1-rmse:0.17594
[332]	validation_0-rmse:0.15771	validation_1-rmse:0.17575
[333]	validation_0-rmse:0.15742	validation_1-rmse:0.17549
[334]	validation_0-rmse:0.15727	validation_1-rmse:0.17535
[335]	validation_0-rmse:0.15709	validation_1-rmse:0.17517
[336]	validation_0-rmse:0.15694	validation_1-rmse:0.17505
[337]	validation_0-rmse:0.15670	validation_1-rmse:0.17483
[338]	validation_0-rmse:0.15650	validation_1-rmse:0.17462
[339]	validation_0-rmse:0.15615	validation_1-rmse:0.17430
[340]	validation_0-rmse:0.15585	validation_1-rmse:0.17400
[341]	validation_0-rmse:0.15543	validation_1-rmse:0.17361
[342]	validation_0-rmse:0.15528	validation_1-rmse:0.17348
[343]	validation_0-rmse:0.15518	validation_1-rmse:0.17338
[344]	validation_0-rmse:0.15496	validation_1-rmse:0.17317
[345]	validation_0-rmse:0.15486	validation_1-rmse:0.17311
[346]	validation_0-rmse:0.15470	validation_1-rmse:0.17296
[347]	validation_0-rmse:0.15463	validation_1-rmse:0.17291
[348]	validation_0-rmse:0.15451	validation_1-rmse:0.17279
[349]	validation_0-rmse:0.15435	validation_1-rmse:0.17266
[350]	validation_0-rmse:0.15410	validation_1-rmse:0.17245
[351]	validation_0-rmse:0.15390	validation_1-rmse:0.17230
[352]	validation_0-rmse:0.15373	validation_1-rmse:0.17215
[353]	validation_0-rmse:0.15339	validation_1-rmse:0.17182
[354]	validation_0-rmse:0.15291	validation_1-rmse:0.17141
[355]	validation_0-rmse:0.15275	validation_1-rmse:0.17128
[356]	validation_0-rmse:0.15262	validation_1-rmse:0.17117
[357]	validation_0-rmse:0.15251	validation_1-rmse:0.17108
[358]	validation_0-rmse:0.15220	validation_1-rmse:0.17079
[359]	validation_0-rmse:0.15202	validation_1-rmse:0.17071
[360]	validation_0-rmse:0.15192	validation_1-rmse:0.17063
[361]	validation_0-rmse:0.15184	validation_1-rmse:0.17058
[362]	validation_0-rmse:0.15164	validation_1-rmse:0.17044
[363]	validation_0-rmse:0.15144	validation_1-rmse:0.17025
[364]	validation_0-rmse:0.15131	validation_1-rmse:0.17016
[365]	validation_0-rmse:0.15119	validation_1-rmse:0.17006
[366]	validation_0-rmse:0.15110	validation_1-rmse:0.17002
[367]	validation_0-rmse:0.15072	validation_1-rmse:0.16970
[368]	validation_0-rmse:0.15064	validation_1-rmse:0.16966
[369]	validation_0-rmse:0.15044	validation_1-rmse:0.16947
[370]	validation_0-rmse:0.15025	validation_1-rmse:0.16932
[371]	validation_0-rmse:0.15007	validation_1-rmse:0.16916
[372]	validation_0-rmse:0.14994	validation_1-rmse:0.16905
[373]	validation_0-rmse:0.14981	validation_1-rmse:0.16892
[374]	validation_0-rmse:0.14972	validation_1-rmse:0.16889
[375]	validation_0-rmse:0.14946	validation_1-rmse:0.16868
[376]	validation_0-rmse:0.14926	validation_1-rmse:0.16847
[377]	validation_0-rmse:0.14906	validation_1-rmse:0.16829
[378]	validation_0-rmse:0.14884	validation_1-rmse:0.16810
[379]	validation_0-rmse:0.14863	validation_1-rmse:0.16795
[380]	validation_0-rmse:0.14853	validation_1-rmse:0.16792
[381]	validation_0-rmse:0.14840	validation_1-rmse:0.16780
[382]	validation_0-rmse:0.14823	validation_1-rmse:0.16767
[383]	validation_0-rmse:0.14812	validation_1-rmse:0.16759
[384]	validation_0-rmse:0.14804	validation_1-rmse:0.16754
[385]	validation_0-rmse:0.14796	validation_1-rmse:0.16749
[386]	validation_0-rmse:0.14791	validation_1-rmse:0.16747
[387]	validation_0-rmse:0.14781	validation_1-rmse:0.16743
[388]	validation_0-rmse:0.14772	validation_1-rmse:0.16739
[389]	validation_0-rmse:0.14757	validation_1-rmse:0.16729
[390]	validation_0-rmse:0.14736	validation_1-rmse:0.16715
[391]	validation_0-rmse:0.14723	validation_1-rmse:0.16705
[392]	validation_0-rmse:0.14699	validation_1-rmse:0.16683
[393]	validation_0-rmse:0.14684	validation_1-rmse:0.16672
[394]	validation_0-rmse:0.14667	validation_1-rmse:0.16656
[395]	validation_0-rmse:0.14650	validation_1-rmse:0.16641
[396]	validation_0-rmse:0.14633	validation_1-rmse:0.16628
[397]	validation_0-rmse:0.14621	validation_1-rmse:0.16615
[398]	validation_0-rmse:0.14610	validation_1-rmse:0.16605
[399]	validation_0-rmse:0.14595	validation_1-rmse:0.16595
[400]	validation_0-rmse:0.14592	validation_1-rmse:0.16593
[401]	validation_0-rmse:0.14571	validation_1-rmse:0.16577
[402]	validation_0-rmse:0.14549	validation_1-rmse:0.16554
[403]	validation_0-rmse:0.14528	validation_1-rmse:0.16537
[404]	validation_0-rmse:0.14516	validation_1-rmse:0.16529
[405]	validation_0-rmse:0.14505	validation_1-rmse:0.16521
[406]	validation_0-rmse:0.14492	validation_1-rmse:0.16513
[407]	validation_0-rmse:0.14477	validation_1-rmse:0.16498
[408]	validation_0-rmse:0.14447	validation_1-rmse:0.16474
[409]	validation_0-rmse:0.14439	validation_1-rmse:0.16471
[410]	validation_0-rmse:0.14414	validation_1-rmse:0.16449
[411]	validation_0-rmse:0.14411	validation_1-rmse:0.16446
[412]	validation_0-rmse:0.14385	validation_1-rmse:0.16426
[413]	validation_0-rmse:0.14362	validation_1-rmse:0.16408
[414]	validation_0-rmse:0.14341	validation_1-rmse:0.16390
[415]	validation_0-rmse:0.14320	validation_1-rmse:0.16371
[416]	validation_0-rmse:0.14308	validation_1-rmse:0.16362
[417]	validation_0-rmse:0.14293	validation_1-rmse:0.16349
[418]	validation_0-rmse:0.14270	validation_1-rmse:0.16330
[419]	validation_0-rmse:0.14260	validation_1-rmse:0.16323
[420]	validation_0-rmse:0.14244	validation_1-rmse:0.16307
[421]	validation_0-rmse:0.14225	validation_1-rmse:0.16291
[422]	validation_0-rmse:0.14218	validation_1-rmse:0.16285
[423]	validation_0-rmse:0.14209	validation_1-rmse:0.16276
[424]	validation_0-rmse:0.14203	validation_1-rmse:0.16271
[425]	validation_0-rmse:0.14189	validation_1-rmse:0.16257
[426]	validation_0-rmse:0.14178	validation_1-rmse:0.16248
[427]	validation_0-rmse:0.14166	validation_1-rmse:0.16240
[428]	validation_0-rmse:0.14160	validation_1-rmse:0.16238
[429]	validation_0-rmse:0.14152	validation_1-rmse:0.16233
[430]	validation_0-rmse:0.14143	validation_1-rmse:0.16227
[431]	validation_0-rmse:0.14142	validation_1-rmse:0.16226
[432]	validation_0-rmse:0.14106	validation_1-rmse:0.16198
[433]	validation_0-rmse:0.14092	validation_1-rmse:0.16187
[434]	validation_0-rmse:0.14079	validation_1-rmse:0.16175
[435]	validation_0-rmse:0.14070	validation_1-rmse:0.16168
[436]	validation_0-rmse:0.14044	validation_1-rmse:0.16146
[437]	validation_0-rmse:0.14020	validation_1-rmse:0.16123
[438]	validation_0-rmse:0.14008	validation_1-rmse:0.16114
[439]	validation_0-rmse:0.13994	validation_1-rmse:0.16101
[440]	validation_0-rmse:0.13976	validation_1-rmse:0.16087
[441]	validation_0-rmse:0.13967	validation_1-rmse:0.16082
[442]	validation_0-rmse:0.13953	validation_1-rmse:0.16069
[443]	validation_0-rmse:0.13937	validation_1-rmse:0.16056
[444]	validation_0-rmse:0.13916	validation_1-rmse:0.16038
[445]	validation_0-rmse:0.13905	validation_1-rmse:0.16029
[446]	validation_0-rmse:0.13896	validation_1-rmse:0.16021
[447]	validation_0-rmse:0.13889	validation_1-rmse:0.16017
[448]	validation_0-rmse:0.13867	validation_1-rmse:0.16002
[449]	validation_0-rmse:0.13847	validation_1-rmse:0.15983
[450]	validation_0-rmse:0.13841	validation_1-rmse:0.15981
[451]	validation_0-rmse:0.13831	validation_1-rmse:0.15969
[452]	validation_0-rmse:0.13824	validation_1-rmse:0.15967
[453]	validation_0-rmse:0.13802	validation_1-rmse:0.15949
[454]	validation_0-rmse:0.13792	validation_1-rmse:0.15941
[455]	validation_0-rmse:0.13778	validation_1-rmse:0.15931
[456]	validation_0-rmse:0.13758	validation_1-rmse:0.15914
[457]	validation_0-rmse:0.13750	validation_1-rmse:0.15909
[458]	validation_0-rmse:0.13738	validation_1-rmse:0.15900
[459]	validation_0-rmse:0.13711	validation_1-rmse:0.15878
[460]	validation_0-rmse:0.13689	validation_1-rmse:0.15859
[461]	validation_0-rmse:0.13665	validation_1-rmse:0.15835
[462]	validation_0-rmse:0.13645	validation_1-rmse:0.15821
[463]	validation_0-rmse:0.13632	validation_1-rmse:0.15809
[464]	validation_0-rmse:0.13615	validation_1-rmse:0.15796
[465]	validation_0-rmse:0.13592	validation_1-rmse:0.15775
[466]	validation_0-rmse:0.13577	validation_1-rmse:0.15765
[467]	validation_0-rmse:0.13564	validation_1-rmse:0.15755
[468]	validation_0-rmse:0.13560	validation_1-rmse:0.15753
[469]	validation_0-rmse:0.13550	validation_1-rmse:0.15745
[470]	validation_0-rmse:0.13537	validation_1-rmse:0.15737
[471]	validation_0-rmse:0.13521	validation_1-rmse:0.15723
[472]	validation_0-rmse:0.13504	validation_1-rmse:0.15707
[473]	validation_0-rmse:0.13493	validation_1-rmse:0.15700
[474]	validation_0-rmse:0.13475	validation_1-rmse:0.15685
[475]	validation_0-rmse:0.13459	validation_1-rmse:0.15672
[476]	validation_0-rmse:0.13431	validation_1-rmse:0.15645
[477]	validation_0-rmse:0.13416	validation_1-rmse:0.15633
[478]	validation_0-rmse:0.13405	validation_1-rmse:0.15625
[479]	validation_0-rmse:0.13394	validation_1-rmse:0.15617
[480]	validation_0-rmse:0.13388	validation_1-rmse:0.15614
[481]	validation_0-rmse:0.13379	validation_1-rmse:0.15604
[482]	validation_0-rmse:0.13355	validation_1-rmse:0.15576
[483]	validation_0-rmse:0.13348	validation_1-rmse:0.15572
[484]	validation_0-rmse:0.13338	validation_1-rmse:0.15565
[485]	validation_0-rmse:0.13326	validation_1-rmse:0.15550
[486]	validation_0-rmse:0.13310	validation_1-rmse:0.15535
[487]	validation_0-rmse:0.13281	validation_1-rmse:0.15508
[488]	validation_0-rmse:0.13267	validation_1-rmse:0.15500
[489]	validation_0-rmse:0.13257	validation_1-rmse:0.15494
[490]	validation_0-rmse:0.13249	validation_1-rmse:0.15486
[491]	validation_0-rmse:0.13232	validation_1-rmse:0.15470
[492]	validation_0-rmse:0.13223	validation_1-rmse:0.15467
[493]	validation_0-rmse:0.13216	validation_1-rmse:0.15465
[494]	validation_0-rmse:0.13203	validation_1-rmse:0.15453
[495]	validation_0-rmse:0.13197	validation_1-rmse:0.15449
[496]	validation_0-rmse:0.13188	validation_1-rmse:0.15441
[497]	validation_0-rmse:0.13176	validation_1-rmse:0.15430
[498]	validation_0-rmse:0.13170	validation_1-rmse:0.15427
[499]	validation_0-rmse:0.13162	validation_1-rmse:0.15420
[500]	validation_0-rmse:0.13155	validation_1-rmse:0.15412
[501]	validation_0-rmse:0.13132	validation_1-rmse:0.15393
[502]	validation_0-rmse:0.13121	validation_1-rmse:0.15382
[503]	validation_0-rmse:0.13108	validation_1-rmse:0.15372
[504]	validation_0-rmse:0.13095	validation_1-rmse:0.15364
[505]	validation_0-rmse:0.13081	validation_1-rmse:0.15353
[506]	validation_0-rmse:0.13069	validation_1-rmse:0.15344
[507]	validation_0-rmse:0.13048	validation_1-rmse:0.15327
[508]	validation_0-rmse:0.13029	validation_1-rmse:0.15307
[509]	validation_0-rmse:0.13005	validation_1-rmse:0.15287
[510]	validation_0-rmse:0.12999	validation_1-rmse:0.15283
[511]	validation_0-rmse:0.12989	validation_1-rmse:0.15274
[512]	validation_0-rmse:0.12975	validation_1-rmse:0.15262
[513]	validation_0-rmse:0.12972	validation_1-rmse:0.15261
[514]	validation_0-rmse:0.12963	validation_1-rmse:0.15253
[515]	validation_0-rmse:0.12948	validation_1-rmse:0.15241
[516]	validation_0-rmse:0.12936	validation_1-rmse:0.15232
[517]	validation_0-rmse:0.12926	validation_1-rmse:0.15227
[518]	validation_0-rmse:0.12921	validation_1-rmse:0.15224
[519]	validation_0-rmse:0.12902	validation_1-rmse:0.15206
[520]	validation_0-rmse:0.12888	validation_1-rmse:0.15194
[521]	validation_0-rmse:0.12878	validation_1-rmse:0.15189
[522]	validation_0-rmse:0.12857	validation_1-rmse:0.15172
[523]	validation_0-rmse:0.12851	validation_1-rmse:0.15167
[524]	validation_0-rmse:0.12842	validation_1-rmse:0.15160
[525]	validation_0-rmse:0.12826	validation_1-rmse:0.15147
[526]	validation_0-rmse:0.12819	validation_1-rmse:0.15143
[527]	validation_0-rmse:0.12815	validation_1-rmse:0.15141
[528]	validation_0-rmse:0.12799	validation_1-rmse:0.15129
[529]	validation_0-rmse:0.12791	validation_1-rmse:0.15125
[530]	validation_0-rmse:0.12782	validation_1-rmse:0.15119
[531]	validation_0-rmse:0.12766	validation_1-rmse:0.15106
[532]	validation_0-rmse:0.12755	validation_1-rmse:0.15098
[533]	validation_0-rmse:0.12748	validation_1-rmse:0.15092
[534]	validation_0-rmse:0.12741	validation_1-rmse:0.15085
[535]	validation_0-rmse:0.12731	validation_1-rmse:0.15079
[536]	validation_0-rmse:0.12722	validation_1-rmse:0.15072
[537]	validation_0-rmse:0.12714	validation_1-rmse:0.15067
[538]	validation_0-rmse:0.12705	validation_1-rmse:0.15057
[539]	validation_0-rmse:0.12690	validation_1-rmse:0.15045
[540]	validation_0-rmse:0.12678	validation_1-rmse:0.15035
[541]	validation_0-rmse:0.12669	validation_1-rmse:0.15026
[542]	validation_0-rmse:0.12654	validation_1-rmse:0.15012
[543]	validation_0-rmse:0.12644	validation_1-rmse:0.15006
[544]	validation_0-rmse:0.12631	validation_1-rmse:0.14995
[545]	validation_0-rmse:0.12621	validation_1-rmse:0.14985
[546]	validation_0-rmse:0.12612	validation_1-rmse:0.14980
[547]	validation_0-rmse:0.12597	validation_1-rmse:0.14965
[548]	validation_0-rmse:0.12588	validation_1-rmse:0.14959
[549]	validation_0-rmse:0.12584	validation_1-rmse:0.14957
[550]	validation_0-rmse:0.12576	validation_1-rmse:0.14952
[551]	validation_0-rmse:0.12565	validation_1-rmse:0.14946
[552]	validation_0-rmse:0.12560	validation_1-rmse:0.14942
[553]	validation_0-rmse:0.12547	validation_1-rmse:0.14930
[554]	validation_0-rmse:0.12538	validation_1-rmse:0.14926
[555]	validation_0-rmse:0.12530	validation_1-rmse:0.14923
[556]	validation_0-rmse:0.12526	validation_1-rmse:0.14922
[557]	validation_0-rmse:0.12513	validation_1-rmse:0.14913
[558]	validation_0-rmse:0.12505	validation_1-rmse:0.14907
[559]	validation_0-rmse:0.12495	validation_1-rmse:0.14900
[560]	validation_0-rmse:0.12489	validation_1-rmse:0.14894
[561]	validation_0-rmse:0.12482	validation_1-rmse:0.14890
[562]	validation_0-rmse:0.12471	validation_1-rmse:0.14879
[563]	validation_0-rmse:0.12461	validation_1-rmse:0.14870
[564]	validation_0-rmse:0.12447	validation_1-rmse:0.14858
[565]	validation_0-rmse:0.12442	validation_1-rmse:0.14857
[566]	validation_0-rmse:0.12436	validation_1-rmse:0.14852
[567]	validation_0-rmse:0.12426	validation_1-rmse:0.14843
[568]	validation_0-rmse:0.12416	validation_1-rmse:0.14835
[569]	validation_0-rmse:0.12408	validation_1-rmse:0.14832
[570]	validation_0-rmse:0.12399	validation_1-rmse:0.14824
[571]	validation_0-rmse:0.12384	validation_1-rmse:0.14811
[572]	validation_0-rmse:0.12378	validation_1-rmse:0.14806
[573]	validation_0-rmse:0.12367	validation_1-rmse:0.14797
[574]	validation_0-rmse:0.12349	validation_1-rmse:0.14781
[575]	validation_0-rmse:0.12344	validation_1-rmse:0.14779
[576]	validation_0-rmse:0.12329	validation_1-rmse:0.14765
[577]	validation_0-rmse:0.12308	validation_1-rmse:0.14746
[578]	validation_0-rmse:0.12303	validation_1-rmse:0.14743
[579]	validation_0-rmse:0.12290	validation_1-rmse:0.14732
[580]	validation_0-rmse:0.12278	validation_1-rmse:0.14722
[581]	validation_0-rmse:0.12268	validation_1-rmse:0.14712
[582]	validation_0-rmse:0.12263	validation_1-rmse:0.14708
[583]	validation_0-rmse:0.12256	validation_1-rmse:0.14701
[584]	validation_0-rmse:0.12245	validation_1-rmse:0.14693
[585]	validation_0-rmse:0.12240	validation_1-rmse:0.14692
[586]	validation_0-rmse:0.12230	validation_1-rmse:0.14684
[587]	validation_0-rmse:0.12217	validation_1-rmse:0.14673
[588]	validation_0-rmse:0.12209	validation_1-rmse:0.14666
[589]	validation_0-rmse:0.12193	validation_1-rmse:0.14655
[590]	validation_0-rmse:0.12185	validation_1-rmse:0.14648
[591]	validation_0-rmse:0.12169	validation_1-rmse:0.14636
[592]	validation_0-rmse:0.12152	validation_1-rmse:0.14624
[593]	validation_0-rmse:0.12139	validation_1-rmse:0.14616
[594]	validation_0-rmse:0.12132	validation_1-rmse:0.14612
[595]	validation_0-rmse:0.12125	validation_1-rmse:0.14606
[596]	validation_0-rmse:0.12112	validation_1-rmse:0.14597
[597]	validation_0-rmse:0.12104	validation_1-rmse:0.14594
[598]	validation_0-rmse:0.12094	validation_1-rmse:0.14585
[599]	validation_0-rmse:0.12086	validation_1-rmse:0.14578
[600]	validation_0-rmse:0.12081	validation_1-rmse:0.14575
[601]	validation_0-rmse:0.12076	validation_1-rmse:0.14572
[602]	validation_0-rmse:0.12072	validation_1-rmse:0.14568
[603]	validation_0-rmse:0.12067	validation_1-rmse:0.14565
[604]	validation_0-rmse:0.12059	validation_1-rmse:0.14559
[605]	validation_0-rmse:0.12052	validation_1-rmse:0.14553
[606]	validation_0-rmse:0.12041	validation_1-rmse:0.14544
[607]	validation_0-rmse:0.12023	validation_1-rmse:0.14529
[608]	validation_0-rmse:0.12014	validation_1-rmse:0.14521
[609]	validation_0-rmse:0.12009	validation_1-rmse:0.14520
[610]	validation_0-rmse:0.12003	validation_1-rmse:0.14517
[611]	validation_0-rmse:0.11996	validation_1-rmse:0.14512
[612]	validation_0-rmse:0.11991	validation_1-rmse:0.14508
[613]	validation_0-rmse:0.11983	validation_1-rmse:0.14502
[614]	validation_0-rmse:0.11970	validation_1-rmse:0.14492
[615]	validation_0-rmse:0.11953	validation_1-rmse:0.14479
[616]	validation_0-rmse:0.11945	validation_1-rmse:0.14477
[617]	validation_0-rmse:0.11927	validation_1-rmse:0.14460
[618]	validation_0-rmse:0.11921	validation_1-rmse:0.14457
[619]	validation_0-rmse:0.11917	validation_1-rmse:0.14456
[620]	validation_0-rmse:0.11906	validation_1-rmse:0.14445
[621]	validation_0-rmse:0.11898	validation_1-rmse:0.14439
[622]	validation_0-rmse:0.11892	validation_1-rmse:0.14437
[623]	validation_0-rmse:0.11888	validation_1-rmse:0.14435
[624]	validation_0-rmse:0.11883	validation_1-rmse:0.14431
[625]	validation_0-rmse:0.11874	validation_1-rmse:0.14425
[626]	validation_0-rmse:0.11865	validation_1-rmse:0.14419
[627]	validation_0-rmse:0.11850	validation_1-rmse:0.14404
[628]	validation_0-rmse:0.11846	validation_1-rmse:0.14399
[629]	validation_0-rmse:0.11841	validation_1-rmse:0.14397
[630]	validation_0-rmse:0.11839	validation_1-rmse:0.14395
[631]	validation_0-rmse:0.11828	validation_1-rmse:0.14387
[632]	validation_0-rmse:0.11819	validation_1-rmse:0.14379
[633]	validation_0-rmse:0.11803	validation_1-rmse:0.14366
[634]	validation_0-rmse:0.11799	validation_1-rmse:0.14364
[635]	validation_0-rmse:0.11786	validation_1-rmse:0.14352
[636]	validation_0-rmse:0.11779	validation_1-rmse:0.14345
[637]	validation_0-rmse:0.11765	validation_1-rmse:0.14334
[638]	validation_0-rmse:0.11758	validation_1-rmse:0.14332
[639]	validation_0-rmse:0.11754	validation_1-rmse:0.14332
[640]	validation_0-rmse:0.11750	validation_1-rmse:0.14330
[641]	validation_0-rmse:0.11736	validation_1-rmse:0.14316
[642]	validation_0-rmse:0.11731	validation_1-rmse:0.14315
[643]	validation_0-rmse:0.11721	validation_1-rmse:0.14307
[644]	validation_0-rmse:0.11706	validation_1-rmse:0.14293
[645]	validation_0-rmse:0.11696	validation_1-rmse:0.14283
[646]	validation_0-rmse:0.11686	validation_1-rmse:0.14275
[647]	validation_0-rmse:0.11673	validation_1-rmse:0.14265
[648]	validation_0-rmse:0.11666	validation_1-rmse:0.14263
[649]	validation_0-rmse:0.11660	validation_1-rmse:0.14259
[650]	validation_0-rmse:0.11653	validation_1-rmse:0.14257
[651]	validation_0-rmse:0.11649	validation_1-rmse:0.14254
[652]	validation_0-rmse:0.11639	validation_1-rmse:0.14246
[653]	validation_0-rmse:0.11629	validation_1-rmse:0.14239
[654]	validation_0-rmse:0.11620	validation_1-rmse:0.14232
[655]	validation_0-rmse:0.11607	validation_1-rmse:0.14221
[656]	validation_0-rmse:0.11604	validation_1-rmse:0.14219
[657]	validation_0-rmse:0.11591	validation_1-rmse:0.14209
[658]	validation_0-rmse:0.11586	validation_1-rmse:0.14204
[659]	validation_0-rmse:0.11575	validation_1-rmse:0.14197
[660]	validation_0-rmse:0.11566	validation_1-rmse:0.14191
[661]	validation_0-rmse:0.11552	validation_1-rmse:0.14178
[662]	validation_0-rmse:0.11546	validation_1-rmse:0.14176
[663]	validation_0-rmse:0.11538	validation_1-rmse:0.14173
[664]	validation_0-rmse:0.11530	validation_1-rmse:0.14167
[665]	validation_0-rmse:0.11523	validation_1-rmse:0.14162
[666]	validation_0-rmse:0.11501	validation_1-rmse:0.14141
[667]	validation_0-rmse:0.11494	validation_1-rmse:0.14136
[668]	validation_0-rmse:0.11487	validation_1-rmse:0.14133
[669]	validation_0-rmse:0.11482	validation_1-rmse:0.14132
[670]	validation_0-rmse:0.11477	validation_1-rmse:0.14129
[671]	validation_0-rmse:0.11468	validation_1-rmse:0.14121
[672]	validation_0-rmse:0.11447	validation_1-rmse:0.14105
[673]	validation_0-rmse:0.11439	validation_1-rmse:0.14098
[674]	validation_0-rmse:0.11429	validation_1-rmse:0.14090
[675]	validation_0-rmse:0.11422	validation_1-rmse:0.14086
[676]	validation_0-rmse:0.11418	validation_1-rmse:0.14086
[677]	validation_0-rmse:0.11411	validation_1-rmse:0.14083
[678]	validation_0-rmse:0.11403	validation_1-rmse:0.14077
[679]	validation_0-rmse:0.11390	validation_1-rmse:0.14066
[680]	validation_0-rmse:0.11386	validation_1-rmse:0.14063
[681]	validation_0-rmse:0.11378	validation_1-rmse:0.14059
[682]	validation_0-rmse:0.11360	validation_1-rmse:0.14043
[683]	validation_0-rmse:0.11355	validation_1-rmse:0.14041
[684]	validation_0-rmse:0.11344	validation_1-rmse:0.14034
[685]	validation_0-rmse:0.11336	validation_1-rmse:0.14025
[686]	validation_0-rmse:0.11324	validation_1-rmse:0.14016
[687]	validation_0-rmse:0.11321	validation_1-rmse:0.14016
[688]	validation_0-rmse:0.11311	validation_1-rmse:0.14010
[689]	validation_0-rmse:0.11308	validation_1-rmse:0.14008
[690]	validation_0-rmse:0.11302	validation_1-rmse:0.14002
[691]	validation_0-rmse:0.11288	validation_1-rmse:0.13989
[692]	validation_0-rmse:0.11280	validation_1-rmse:0.13984
[693]	validation_0-rmse:0.11270	validation_1-rmse:0.13975
[694]	validation_0-rmse:0.11262	validation_1-rmse:0.13969
[695]	validation_0-rmse:0.11255	validation_1-rmse:0.13964
[696]	validation_0-rmse:0.11245	validation_1-rmse:0.13958
[697]	validation_0-rmse:0.11239	validation_1-rmse:0.13953
[698]	validation_0-rmse:0.11232	validation_1-rmse:0.13950
[699]	validation_0-rmse:0.11230	validation_1-rmse:0.13949
[700]	validation_0-rmse:0.11212	validation_1-rmse:0.13934
[701]	validation_0-rmse:0.11204	validation_1-rmse:0.13928
[702]	validation_0-rmse:0.11194	validation_1-rmse:0.13922
[703]	validation_0-rmse:0.11191	validation_1-rmse:0.13922
[704]	validation_0-rmse:0.11182	validation_1-rmse:0.13914
[705]	validation_0-rmse:0.11176	validation_1-rmse:0.13908
[706]	validation_0-rmse:0.11174	validation_1-rmse:0.13908
[707]	validation_0-rmse:0.11167	validation_1-rmse:0.13903
[708]	validation_0-rmse:0.11159	validation_1-rmse:0.13896
[709]	validation_0-rmse:0.11145	validation_1-rmse:0.13884
[710]	validation_0-rmse:0.11138	validation_1-rmse:0.13879
[711]	validation_0-rmse:0.11131	validation_1-rmse:0.13874
[712]	validation_0-rmse:0.11126	validation_1-rmse:0.13871
[713]	validation_0-rmse:0.11120	validation_1-rmse:0.13868
[714]	validation_0-rmse:0.11104	validation_1-rmse:0.13855
[715]	validation_0-rmse:0.11090	validation_1-rmse:0.13844
[716]	validation_0-rmse:0.11082	validation_1-rmse:0.13837
[717]	validation_0-rmse:0.11076	validation_1-rmse:0.13834
[718]	validation_0-rmse:0.11072	validation_1-rmse:0.13834
[719]	validation_0-rmse:0.11070	validation_1-rmse:0.13832
[720]	validation_0-rmse:0.11056	validation_1-rmse:0.13818
[721]	validation_0-rmse:0.11050	validation_1-rmse:0.13813
[722]	validation_0-rmse:0.11044	validation_1-rmse:0.13810
[723]	validation_0-rmse:0.11038	validation_1-rmse:0.13807
[724]	validation_0-rmse:0.11028	validation_1-rmse:0.13801
[725]	validation_0-rmse:0.11024	validation_1-rmse:0.13798
[726]	validation_0-rmse:0.11011	validation_1-rmse:0.13789
[727]	validation_0-rmse:0.11003	validation_1-rmse:0.13782
[728]	validation_0-rmse:0.10992	validation_1-rmse:0.13773
[729]	validation_0-rmse:0.10987	validation_1-rmse:0.13767
[730]	validation_0-rmse:0.10977	validation_1-rmse:0.13760
[731]	validation_0-rmse:0.10975	validation_1-rmse:0.13760
[732]	validation_0-rmse:0.10966	validation_1-rmse:0.13756
[733]	validation_0-rmse:0.10955	validation_1-rmse:0.13746
[734]	validation_0-rmse:0.10950	validation_1-rmse:0.13743
[735]	validation_0-rmse:0.10948	validation_1-rmse:0.13743
[736]	validation_0-rmse:0.10940	validation_1-rmse:0.13736
[737]	validation_0-rmse:0.10928	validation_1-rmse:0.13726
[738]	validation_0-rmse:0.10925	validation_1-rmse:0.13726
[739]	validation_0-rmse:0.10918	validation_1-rmse:0.13721
[740]	validation_0-rmse:0.10915	validation_1-rmse:0.13719
[741]	validation_0-rmse:0.10904	validation_1-rmse:0.13709
[742]	validation_0-rmse:0.10897	validation_1-rmse:0.13706
[743]	validation_0-rmse:0.10889	validation_1-rmse:0.13701
[744]	validation_0-rmse:0.10883	validation_1-rmse:0.13694
[745]	validation_0-rmse:0.10876	validation_1-rmse:0.13689
[746]	validation_0-rmse:0.10867	validation_1-rmse:0.13679
[747]	validation_0-rmse:0.10861	validation_1-rmse:0.13676
[748]	validation_0-rmse:0.10853	validation_1-rmse:0.13669
[749]	validation_0-rmse:0.10850	validation_1-rmse:0.13666
[750]	validation_0-rmse:0.10844	validation_1-rmse:0.13664
[751]	validation_0-rmse:0.10830	validation_1-rmse:0.13653
[752]	validation_0-rmse:0.10820	validation_1-rmse:0.13649
[753]	validation_0-rmse:0.10807	validation_1-rmse:0.13639
[754]	validation_0-rmse:0.10800	validation_1-rmse:0.13634
[755]	validation_0-rmse:0.10794	validation_1-rmse:0.13630
[756]	validation_0-rmse:0.10790	validation_1-rmse:0.13626
[757]	validation_0-rmse:0.10785	validation_1-rmse:0.13622
[758]	validation_0-rmse:0.10782	validation_1-rmse:0.13621
[759]	validation_0-rmse:0.10776	validation_1-rmse:0.13616
[760]	validation_0-rmse:0.10775	validation_1-rmse:0.13615
[761]	validation_0-rmse:0.10767	validation_1-rmse:0.13607
[762]	validation_0-rmse:0.10758	validation_1-rmse:0.13600
[763]	validation_0-rmse:0.10755	validation_1-rmse:0.13600
[764]	validation_0-rmse:0.10749	validation_1-rmse:0.13595
[765]	validation_0-rmse:0.10736	validation_1-rmse:0.13584
[766]	validation_0-rmse:0.10724	validation_1-rmse:0.13574
[767]	validation_0-rmse:0.10718	validation_1-rmse:0.13570
[768]	validation_0-rmse:0.10713	validation_1-rmse:0.13568
[769]	validation_0-rmse:0.10703	validation_1-rmse:0.13562
[770]	validation_0-rmse:0.10700	validation_1-rmse:0.13559
[771]	validation_0-rmse:0.10695	validation_1-rmse:0.13557
[772]	validation_0-rmse:0.10686	validation_1-rmse:0.13551
[773]	validation_0-rmse:0.10679	validation_1-rmse:0.13546
[774]	validation_0-rmse:0.10671	validation_1-rmse:0.13539
[775]	validation_0-rmse:0.10664	validation_1-rmse:0.13533
[776]	validation_0-rmse:0.10660	validation_1-rmse:0.13533
[777]	validation_0-rmse:0.10656	validation_1-rmse:0.13530
[778]	validation_0-rmse:0.10650	validation_1-rmse:0.13529
[779]	validation_0-rmse:0.10645	validation_1-rmse:0.13526
[780]	validation_0-rmse:0.10628	validation_1-rmse:0.13512
[781]	validation_0-rmse:0.10619	validation_1-rmse:0.13504
[782]	validation_0-rmse:0.10614	validation_1-rmse:0.13502
[783]	validation_0-rmse:0.10611	validation_1-rmse:0.13501
[784]	validation_0-rmse:0.10605	validation_1-rmse:0.13498
[785]	validation_0-rmse:0.10598	validation_1-rmse:0.13491
[786]	validation_0-rmse:0.10596	validation_1-rmse:0.13490
[787]	validation_0-rmse:0.10592	validation_1-rmse:0.13487
[788]	validation_0-rmse:0.10588	validation_1-rmse:0.13483
[789]	validation_0-rmse:0.10582	validation_1-rmse:0.13476
[790]	validation_0-rmse:0.10581	validation_1-rmse:0.13475
[791]	validation_0-rmse:0.10568	validation_1-rmse:0.13463
[792]	validation_0-rmse:0.10563	validation_1-rmse:0.13459
[793]	validation_0-rmse:0.10552	validation_1-rmse:0.13450
[794]	validation_0-rmse:0.10546	validation_1-rmse:0.13446
[795]	validation_0-rmse:0.10534	validation_1-rmse:0.13437
[796]	validation_0-rmse:0.10524	validation_1-rmse:0.13431
[797]	validation_0-rmse:0.10519	validation_1-rmse:0.13426
[798]	validation_0-rmse:0.10515	validation_1-rmse:0.13426
[799]	validation_0-rmse:0.10510	validation_1-rmse:0.13422
[800]	validation_0-rmse:0.10500	validation_1-rmse:0.13413
[801]	validation_0-rmse:0.10495	validation_1-rmse:0.13412
[802]	validation_0-rmse:0.10488	validation_1-rmse:0.13406
[803]	validation_0-rmse:0.10483	validation_1-rmse:0.13402
[804]	validation_0-rmse:0.10476	validation_1-rmse:0.13397
[805]	validation_0-rmse:0.10471	validation_1-rmse:0.13395
[806]	validation_0-rmse:0.10464	validation_1-rmse:0.13388
[807]	validation_0-rmse:0.10458	validation_1-rmse:0.13385
[808]	validation_0-rmse:0.10453	validation_1-rmse:0.13383
[809]	validation_0-rmse:0.10443	validation_1-rmse:0.13375
[810]	validation_0-rmse:0.10434	validation_1-rmse:0.13368
[811]	validation_0-rmse:0.10429	validation_1-rmse:0.13367
[812]	validation_0-rmse:0.10422	validation_1-rmse:0.13361
[813]	validation_0-rmse:0.10414	validation_1-rmse:0.13354
[814]	validation_0-rmse:0.10409	validation_1-rmse:0.13351
[815]	validation_0-rmse:0.10404	validation_1-rmse:0.13345
[816]	validation_0-rmse:0.10399	validation_1-rmse:0.13344
[817]	validation_0-rmse:0.10394	validation_1-rmse:0.13340
[818]	validation_0-rmse:0.10389	validation_1-rmse:0.13336
[819]	validation_0-rmse:0.10385	validation_1-rmse:0.13333
[820]	validation_0-rmse:0.10378	validation_1-rmse:0.13329
[821]	validation_0-rmse:0.10375	validation_1-rmse:0.13329
[822]	validation_0-rmse:0.10368	validation_1-rmse:0.13324
[823]	validation_0-rmse:0.10365	validation_1-rmse:0.13323
[824]	validation_0-rmse:0.10363	validation_1-rmse:0.13323
[825]	validation_0-rmse:0.10355	validation_1-rmse:0.13317
[826]	validation_0-rmse:0.10350	validation_1-rmse:0.13315
[827]	validation_0-rmse:0.10340	validation_1-rmse:0.13308
[828]	validation_0-rmse:0.10333	validation_1-rmse:0.13300
[829]	validation_0-rmse:0.10329	validation_1-rmse:0.13299
[830]	validation_0-rmse:0.10323	validation_1-rmse:0.13294
[831]	validation_0-rmse:0.10320	validation_1-rmse:0.13293
[832]	validation_0-rmse:0.10314	validation_1-rmse:0.13289
[833]	validation_0-rmse:0.10311	validation_1-rmse:0.13288
[834]	validation_0-rmse:0.10308	validation_1-rmse:0.13287
[835]	validation_0-rmse:0.10303	validation_1-rmse:0.13283
[836]	validation_0-rmse:0.10292	validation_1-rmse:0.13276
[837]	validation_0-rmse:0.10289	validation_1-rmse:0.13276
[838]	validation_0-rmse:0.10286	validation_1-rmse:0.13274
[839]	validation_0-rmse:0.10278	validation_1-rmse:0.13267
[840]	validation_0-rmse:0.10273	validation_1-rmse:0.13264
[841]	validation_0-rmse:0.10267	validation_1-rmse:0.13261
[842]	validation_0-rmse:0.10256	validation_1-rmse:0.13253
[843]	validation_0-rmse:0.10252	validation_1-rmse:0.13252
[844]	validation_0-rmse:0.10246	validation_1-rmse:0.13247
[845]	validation_0-rmse:0.10242	validation_1-rmse:0.13245
[846]	validation_0-rmse:0.10234	validation_1-rmse:0.13238
[847]	validation_0-rmse:0.10230	validation_1-rmse:0.13237
[848]	validation_0-rmse:0.10227	validation_1-rmse:0.13236
[849]	validation_0-rmse:0.10223	validation_1-rmse:0.13234
[850]	validation_0-rmse:0.10217	validation_1-rmse:0.13229
[851]	validation_0-rmse:0.10214	validation_1-rmse:0.13227
[852]	validation_0-rmse:0.10211	validation_1-rmse:0.13225
[853]	validation_0-rmse:0.10201	validation_1-rmse:0.13218
[854]	validation_0-rmse:0.10193	validation_1-rmse:0.13211
[855]	validation_0-rmse:0.10187	validation_1-rmse:0.13207
[856]	validation_0-rmse:0.10181	validation_1-rmse:0.13206
[857]	validation_0-rmse:0.10175	validation_1-rmse:0.13201
[858]	validation_0-rmse:0.10165	validation_1-rmse:0.13192
[859]	validation_0-rmse:0.10162	validation_1-rmse:0.13191
[860]	validation_0-rmse:0.10158	validation_1-rmse:0.13190
[861]	validation_0-rmse:0.10154	validation_1-rmse:0.13188
[862]	validation_0-rmse:0.10147	validation_1-rmse:0.13183
[863]	validation_0-rmse:0.10142	validation_1-rmse:0.13177
[864]	validation_0-rmse:0.10138	validation_1-rmse:0.13174
[865]	validation_0-rmse:0.10132	validation_1-rmse:0.13170
[866]	validation_0-rmse:0.10130	validation_1-rmse:0.13170
[867]	validation_0-rmse:0.10128	validation_1-rmse:0.13169
[868]	validation_0-rmse:0.10125	validation_1-rmse:0.13165
[869]	validation_0-rmse:0.10120	validation_1-rmse:0.13161
[870]	validation_0-rmse:0.10116	validation_1-rmse:0.13158
[871]	validation_0-rmse:0.10111	validation_1-rmse:0.13155
[872]	validation_0-rmse:0.10108	validation_1-rmse:0.13152
[873]	validation_0-rmse:0.10097	validation_1-rmse:0.13143
[874]	validation_0-rmse:0.10094	validation_1-rmse:0.13143
[875]	validation_0-rmse:0.10084	validation_1-rmse:0.13136
[876]	validation_0-rmse:0.10079	validation_1-rmse:0.13135
[877]	validation_0-rmse:0.10076	validation_1-rmse:0.13135
[878]	validation_0-rmse:0.10071	validation_1-rmse:0.13134
[879]	validation_0-rmse:0.10066	validation_1-rmse:0.13129
[880]	validation_0-rmse:0.10062	validation_1-rmse:0.13128
[881]	validation_0-rmse:0.10056	validation_1-rmse:0.13124
[882]	validation_0-rmse:0.10050	validation_1-rmse:0.13120
[883]	validation_0-rmse:0.10047	validation_1-rmse:0.13118
[884]	validation_0-rmse:0.10040	validation_1-rmse:0.13112
[885]	validation_0-rmse:0.10036	validation_1-rmse:0.13109
[886]	validation_0-rmse:0.10030	validation_1-rmse:0.13104
[887]	validation_0-rmse:0.10029	validation_1-rmse:0.13104
[888]	validation_0-rmse:0.10027	validation_1-rmse:0.13104
[889]	validation_0-rmse:0.10020	validation_1-rmse:0.13098
[890]	validation_0-rmse:0.10019	validation_1-rmse:0.13097
[891]	validation_0-rmse:0.10013	validation_1-rmse:0.13095
[892]	validation_0-rmse:0.10010	validation_1-rmse:0.13095
[893]	validation_0-rmse:0.10004	validation_1-rmse:0.13090
[894]	validation_0-rmse:0.10002	validation_1-rmse:0.13088
[895]	validation_0-rmse:0.09997	validation_1-rmse:0.13086
[896]	validation_0-rmse:0.09992	validation_1-rmse:0.13082
[897]	validation_0-rmse:0.09988	validation_1-rmse:0.13079
[898]	validation_0-rmse:0.09979	validation_1-rmse:0.13070
[899]	validation_0-rmse:0.09966	validation_1-rmse:0.13058
[900]	validation_0-rmse:0.09960	validation_1-rmse:0.13054
[901]	validation_0-rmse:0.09956	validation_1-rmse:0.13054
[902]	validation_0-rmse:0.09954	validation_1-rmse:0.13052
[903]	validation_0-rmse:0.09945	validation_1-rmse:0.13046
[904]	validation_0-rmse:0.09935	validation_1-rmse:0.13037
[905]	validation_0-rmse:0.09930	validation_1-rmse:0.13034
[906]	validation_0-rmse:0.09924	validation_1-rmse:0.13031
[907]	validation_0-rmse:0.09918	validation_1-rmse:0.13026
[908]	validation_0-rmse:0.09910	validation_1-rmse:0.13018
[909]	validation_0-rmse:0.09904	validation_1-rmse:0.13015
[910]	validation_0-rmse:0.09898	validation_1-rmse:0.13012
[911]	validation_0-rmse:0.09893	validation_1-rmse:0.13009
[912]	validation_0-rmse:0.09889	validation_1-rmse:0.13006
[913]	validation_0-rmse:0.09883	validation_1-rmse:0.13002
[914]	validation_0-rmse:0.09881	validation_1-rmse:0.13001
[915]	validation_0-rmse:0.09875	validation_1-rmse:0.12995
[916]	validation_0-rmse:0.09868	validation_1-rmse:0.12990
[917]	validation_0-rmse:0.09864	validation_1-rmse:0.12987
[918]	validation_0-rmse:0.09858	validation_1-rmse:0.12984
[919]	validation_0-rmse:0.09854	validation_1-rmse:0.12982
[920]	validation_0-rmse:0.09852	validation_1-rmse:0.12982
[921]	validation_0-rmse:0.09850	validation_1-rmse:0.12979
[922]	validation_0-rmse:0.09843	validation_1-rmse:0.12973
[923]	validation_0-rmse:0.09838	validation_1-rmse:0.12971
[924]	validation_0-rmse:0.09829	validation_1-rmse:0.12963
[925]	validation_0-rmse:0.09824	validation_1-rmse:0.12958
[926]	validation_0-rmse:0.09815	validation_1-rmse:0.12951
[927]	validation_0-rmse:0.09809	validation_1-rmse:0.12947
[928]	validation_0-rmse:0.09801	validation_1-rmse:0.12942
[929]	validation_0-rmse:0.09798	validation_1-rmse:0.12941
[930]	validation_0-rmse:0.09794	validation_1-rmse:0.12938
[931]	validation_0-rmse:0.09792	validation_1-rmse:0.12939
[932]	validation_0-rmse:0.09784	validation_1-rmse:0.12933
[933]	validation_0-rmse:0.09781	validation_1-rmse:0.12933
[934]	validation_0-rmse:0.09777	validation_1-rmse:0.12931
[935]	validation_0-rmse:0.09775	validation_1-rmse:0.12931
[936]	validation_0-rmse:0.09771	validation_1-rmse:0.12930
[937]	validation_0-rmse:0.09766	validation_1-rmse:0.12928
[938]	validation_0-rmse:0.09760	validation_1-rmse:0.12924
[939]	validation_0-rmse:0.09756	validation_1-rmse:0.12922
[940]	validation_0-rmse:0.09752	validation_1-rmse:0.12919
[941]	validation_0-rmse:0.09745	validation_1-rmse:0.12913
[942]	validation_0-rmse:0.09738	validation_1-rmse:0.12908
[943]	validation_0-rmse:0.09728	validation_1-rmse:0.12901
[944]	validation_0-rmse:0.09722	validation_1-rmse:0.12894
[945]	validation_0-rmse:0.09717	validation_1-rmse:0.12892
[946]	validation_0-rmse:0.09711	validation_1-rmse:0.12889
[947]	validation_0-rmse:0.09705	validation_1-rmse:0.12884
[948]	validation_0-rmse:0.09699	validation_1-rmse:0.12880
[949]	validation_0-rmse:0.09697	validation_1-rmse:0.12880
[950]	validation_0-rmse:0.09695	validation_1-rmse:0.12879
[951]	validation_0-rmse:0.09691	validation_1-rmse:0.12877
[952]	validation_0-rmse:0.09678	validation_1-rmse:0.12865
[953]	validation_0-rmse:0.09672	validation_1-rmse:0.12860
[954]	validation_0-rmse:0.09670	validation_1-rmse:0.12859
[955]	validation_0-rmse:0.09666	validation_1-rmse:0.12856
[956]	validation_0-rmse:0.09663	validation_1-rmse:0.12854
[957]	validation_0-rmse:0.09660	validation_1-rmse:0.12853
[958]	validation_0-rmse:0.09658	validation_1-rmse:0.12852
[959]	validation_0-rmse:0.09652	validation_1-rmse:0.12847
[960]	validation_0-rmse:0.09650	validation_1-rmse:0.12845
[961]	validation_0-rmse:0.09648	validation_1-rmse:0.12845
[962]	validation_0-rmse:0.09641	validation_1-rmse:0.12839
[963]	validation_0-rmse:0.09634	validation_1-rmse:0.12836
[964]	validation_0-rmse:0.09631	validation_1-rmse:0.12835
[965]	validation_0-rmse:0.09623	validation_1-rmse:0.12832
[966]	validation_0-rmse:0.09617	validation_1-rmse:0.12827
[967]	validation_0-rmse:0.09614	validation_1-rmse:0.12825
[968]	validation_0-rmse:0.09610	validation_1-rmse:0.12825
[969]	validation_0-rmse:0.09603	validation_1-rmse:0.12820
[970]	validation_0-rmse:0.09597	validation_1-rmse:0.12815
[971]	validation_0-rmse:0.09591	validation_1-rmse:0.12813
[972]	validation_0-rmse:0.09589	validation_1-rmse:0.12813
[973]	validation_0-rmse:0.09587	validation_1-rmse:0.12812
[974]	validation_0-rmse:0.09576	validation_1-rmse:0.12801
[975]	validation_0-rmse:0.09572	validation_1-rmse:0.12798
[976]	validation_0-rmse:0.09565	validation_1-rmse:0.12795
[977]	validation_0-rmse:0.09559	validation_1-rmse:0.12790
[978]	validation_0-rmse:0.09558	validation_1-rmse:0.12789
[979]	validation_0-rmse:0.09555	validation_1-rmse:0.12788
[980]	validation_0-rmse:0.09550	validation_1-rmse:0.12784
[981]	validation_0-rmse:0.09544	validation_1-rmse:0.12779
[982]	validation_0-rmse:0.09540	validation_1-rmse:0.12776
[983]	validation_0-rmse:0.09533	validation_1-rmse:0.12772
[984]	validation_0-rmse:0.09527	validation_1-rmse:0.12768
[985]	validation_0-rmse:0.09525	validation_1-rmse:0.12767
[986]	validation_0-rmse:0.09520	validation_1-rmse:0.12762
[987]	validation_0-rmse:0.09518	validation_1-rmse:0.12762
[988]	validation_0-rmse:0.09513	validation_1-rmse:0.12758
[989]	validation_0-rmse:0.09509	validation_1-rmse:0.12756
[990]	validation_0-rmse:0.09507	validation_1-rmse:0.12756
[991]	validation_0-rmse:0.09499	validation_1-rmse:0.12749
[992]	validation_0-rmse:0.09494	validation_1-rmse:0.12746
[993]	validation_0-rmse:0.09491	validation_1-rmse:0.12745
[994]	validation_0-rmse:0.09485	validation_1-rmse:0.12740
[995]	validation_0-rmse:0.09482	validation_1-rmse:0.12738
[996]	validation_0-rmse:0.09479	validation_1-rmse:0.12736
[997]	validation_0-rmse:0.09476	validation_1-rmse:0.12736
[998]	validation_0-rmse:0.09470	validation_1-rmse:0.12732
[999]	validation_0-rmse:0.09464	validation_1-rmse:0.12729
>>> Using model to predict target TS_GF1_0.15_1 in unseen test data ...
>>> Using model to calculate permutation importance based on unseen test data ...
>>> Calculating prediction scores based on predicting unseen test data of TS_GF1_0.15_1 ...
>>> Collecting results, details about training and testing can be accessed by calling .report_traintest().
>>> Done.

================================
MODEL TRAINING & TESTING RESULTS
================================

## DATA
  > target: TS_GF1_0.15_1
  > features: 21 ['TS_GF1_0.04_1_gfXG', '.TS_GF1_0.04_1_gfXG-10', '.TS_GF1_0.04_1_gfXG-9', '.TS_GF1_0.04_1_gfXG-8', '.TS_GF1_0.04_1_gfXG-7', '.TS_GF1_0.04_1_gfXG-6', '.TS_GF1_0.04_1_gfXG-5', '.TS_GF1_0.04_1_gfXG-4', '.TS_GF1_0.04_1_gfXG-3', '.TS_GF1_0.04_1_gfXG-2', '.TS_GF1_0.04_1_gfXG-1', '.YEAR', '.SEASON', '.MONTH', '.WEEK', '.DOY', '.HOUR', '.YEARMONTH', '.YEARDOY', '.YEARWEEK', '.RECORDNUMBER']
  > 350640 records (with missing)
  > 331848 available records for target and all features (no missing values)
  > training on 248886 records (75.0%) of 248886 features between 2005-09-09 10:15:00 and 2024-12-31 23:45:00
  > testing on 82962 unseen records (25.0%) of TS_GF1_0.15_1 between 2005-09-09 09:45:00 and 2024-12-31 20:15:00

## MODEL
  > the model was trained on training data (248886 records)
  > the model was tested on test data (82962 values)
  > estimator:  XGBRegressor(base_score=None, booster=None, callbacks=None,
             colsample_bylevel=None, colsample_bynode=None,
             colsample_bytree=None, device=None, early_stopping_rounds=50,
             enable_categorical=False, eval_metric=None, feature_types=None,
             gamma=None, grow_policy=None, importance_type=None,
             interaction_constraints=None, learning_rate=None, max_bin=None,
             max_cat_threshold=None, max_cat_to_onehot=None,
             max_delta_step=None, max_depth=None, max_leaves=None,
             min_child_weight=None, missing=nan, monotone_constraints=None,
             multi_strategy=None, n_estimators=1000, n_jobs=-1,
             num_parallel_tree=None, random_state=42, ...)
  > parameters:  {'objective': 'reg:squarederror', 'base_score': None, 'booster': None, 'callbacks': None, 'colsample_bylevel': None, 'colsample_bynode': None, 'colsample_bytree': None, 'device': None, 'early_stopping_rounds': 50, 'enable_categorical': False, 'eval_metric': None, 'feature_types': None, 'gamma': None, 'grow_policy': None, 'importance_type': None, 'interaction_constraints': None, 'learning_rate': None, 'max_bin': None, 'max_cat_threshold': None, 'max_cat_to_onehot': None, 'max_delta_step': None, 'max_depth': None, 'max_leaves': None, 'min_child_weight': None, 'missing': nan, 'monotone_constraints': None, 'multi_strategy': None, 'n_estimators': 1000, 'n_jobs': -1, 'num_parallel_tree': None, 'random_state': 42, 'reg_alpha': None, 'reg_lambda': None, 'sampling_method': None, 'scale_pos_weight': None, 'subsample': None, 'tree_method': None, 'validate_parameters': None, 'verbosity': None}
  > number of features used in model:  21
  > names of features used in model:  ['TS_GF1_0.04_1_gfXG', '.TS_GF1_0.04_1_gfXG-10', '.TS_GF1_0.04_1_gfXG-9', '.TS_GF1_0.04_1_gfXG-8', '.TS_GF1_0.04_1_gfXG-7', '.TS_GF1_0.04_1_gfXG-6', '.TS_GF1_0.04_1_gfXG-5', '.TS_GF1_0.04_1_gfXG-4', '.TS_GF1_0.04_1_gfXG-3', '.TS_GF1_0.04_1_gfXG-2', '.TS_GF1_0.04_1_gfXG-1', '.YEAR', '.SEASON', '.MONTH', '.WEEK', '.DOY', '.HOUR', '.YEARMONTH', '.YEARDOY', '.YEARWEEK', '.RECORDNUMBER']

## FEATURE IMPORTANCES
  > feature importances were calculated based on unseen test data of TS_GF1_0.15_1 (82962 records).
  > feature importances are showing permutation importances from 10 repeats

                        PERM_IMPORTANCE   PERM_SD
.TS_GF1_0.04_1_gfXG-10         0.171001  0.000591
TS_GF1_0.04_1_gfXG             0.101636  0.000454
.DOY                           0.067057  0.000274
.TS_GF1_0.04_1_gfXG-9          0.038266  0.000191
.TS_GF1_0.04_1_gfXG-7          0.023913  0.000140
.YEARMONTH                     0.009845  0.000084
.YEARDOY                       0.008693  0.000038
.WEEK                          0.005000  0.000030
.RECORDNUMBER                  0.004602  0.000021
.TS_GF1_0.04_1_gfXG-8          0.004187  0.000031
.YEARWEEK                      0.003581  0.000022
.TS_GF1_0.04_1_gfXG-5          0.003025  0.000015
.YEAR                          0.002775  0.000021
.HOUR                          0.002376  0.000020
.TS_GF1_0.04_1_gfXG-3          0.001599  0.000008
.TS_GF1_0.04_1_gfXG-1          0.001250  0.000004
.TS_GF1_0.04_1_gfXG-4          0.001103  0.000004
.TS_GF1_0.04_1_gfXG-6          0.000920  0.000008
.MONTH                         0.000512  0.000004
.TS_GF1_0.04_1_gfXG-2          0.000512  0.000003
.SEASON                        0.000455  0.000006


## MODEL SCORES
  All scores were calculated based on unseen test data (82962 records).
  > MAE:  0.09239192780502478 (mean absolute error)
  > MedAE:  0.06836024127685536 (median absolute error)
  > MSE:  0.016202731346709492 (mean squared error)
  > RMSE:  0.1272899499045761 (root mean squared error)
  > MAXE:  2.227963451794434 (max error)
  > MAPE:  0.011 (mean absolute percentage error)
  > R2:  0.9995774893230212


Gap-filling using final model ...
>>> Using final model on all data to predict target TS_GF1_0.15_1 ...
>>> Using final model on all data to calculate permutation importance ...
>>> Calculating prediction scores based on all data predicting TS_GF1_0.15_1 ...
>>> Predicting target TS_GF1_0.15_1 where all features are available ... predicted 350640 records.
>>> Collecting results for final model ...
>>> Filling 18792 missing records in target with predictions from final model ...
>>> Storing gap-filled time series in variable TS_GF1_0.15_1_gfXG ...
>>> Restoring original timestamp in results ...
>>> Combining predictions from full model and fallback model ...

===================
GAP-FILLING RESULTS
===================

Model scores and feature importances were calculated from high-quality predicted targets (18792 values, TS_GF1_0.15_1_gfXG where flag=1) in comparison to observed targets (331848 values, TS_GF1_0.15_1).

## TARGET
- first timestamp:  2005-01-01 00:15:00
- last timestamp:  2024-12-31 23:45:00
- potential number of values: 350640 values)
- target column (observed):  TS_GF1_0.15_1
- missing records (observed):  18792 (cross-check from flag: 18792)
- target column (gap-filled):  TS_GF1_0.15_1_gfXG  (350640 values)
- missing records (gap-filled):  0
- gap-filling flag: FLAG_TS_GF1_0.15_1_gfXG_ISFILLED
  > flag 0 ... observed targets (331848 values)
  > flag 1 ... targets gap-filled with high-quality, all features available (18792 values)
  > flag 2 ... targets gap-filled with fallback (0 values)

## FEATURE IMPORTANCES
- names of features used in model:  ['.TS_GF1_0.04_1_gfXG-10', 'TS_GF1_0.04_1_gfXG', '.DOY', '.TS_GF1_0.04_1_gfXG-9', '.TS_GF1_0.04_1_gfXG-7', '.YEARMONTH', '.YEARDOY', '.WEEK', '.RECORDNUMBER', '.TS_GF1_0.04_1_gfXG-8', '.YEARWEEK', '.TS_GF1_0.04_1_gfXG-5', '.YEAR', '.HOUR', '.TS_GF1_0.04_1_gfXG-3', '.TS_GF1_0.04_1_gfXG-1', '.TS_GF1_0.04_1_gfXG-4', '.TS_GF1_0.04_1_gfXG-6', '.TS_GF1_0.04_1_gfXG-2', '.MONTH', '.SEASON']
- number of features used in model:  21
- permutation importances were calculated from 10 repeats.

                        PERM_IMPORTANCE   PERM_SD
.TS_GF1_0.04_1_gfXG-10         0.171312  0.000237
TS_GF1_0.04_1_gfXG             0.101757  0.000137
.DOY                           0.066810  0.000111
.TS_GF1_0.04_1_gfXG-9          0.038233  0.000074
.TS_GF1_0.04_1_gfXG-7          0.023899  0.000045
.YEARMONTH                     0.009844  0.000035
.YEARDOY                       0.008696  0.000021
.WEEK                          0.005006  0.000010
.RECORDNUMBER                  0.004592  0.000009
.TS_GF1_0.04_1_gfXG-8          0.004206  0.000013
.YEARWEEK                      0.003591  0.000011
.TS_GF1_0.04_1_gfXG-5          0.003040  0.000008
.YEAR                          0.002795  0.000012
.HOUR                          0.002393  0.000010
.TS_GF1_0.04_1_gfXG-3          0.001604  0.000003
.TS_GF1_0.04_1_gfXG-1          0.001275  0.000004
.TS_GF1_0.04_1_gfXG-4          0.001113  0.000003
.TS_GF1_0.04_1_gfXG-6          0.000927  0.000002
.TS_GF1_0.04_1_gfXG-2          0.000517  0.000001
.MONTH                         0.000517  0.000001
.SEASON                        0.000452  0.000001

## MODEL
The model was trained on a training set with test size 25.00%.
- estimator:  XGBRegressor(base_score=None, booster=None, callbacks=None,
             colsample_bylevel=None, colsample_bynode=None,
             colsample_bytree=None, device=None, early_stopping_rounds=50,
             enable_categorical=False, eval_metric=None, feature_types=None,
             gamma=None, grow_policy=None, importance_type=None,
             interaction_constraints=None, learning_rate=None, max_bin=None,
             max_cat_threshold=None, max_cat_to_onehot=None,
             max_delta_step=None, max_depth=None, max_leaves=None,
             min_child_weight=None, missing=nan, monotone_constraints=None,
             multi_strategy=None, n_estimators=1000, n_jobs=-1,
             num_parallel_tree=None, random_state=42, ...)
- parameters:  {'objective': 'reg:squarederror', 'base_score': None, 'booster': None, 'callbacks': None, 'colsample_bylevel': None, 'colsample_bynode': None, 'colsample_bytree': None, 'device': None, 'early_stopping_rounds': 50, 'enable_categorical': False, 'eval_metric': None, 'feature_types': None, 'gamma': None, 'grow_policy': None, 'importance_type': None, 'interaction_constraints': None, 'learning_rate': None, 'max_bin': None, 'max_cat_threshold': None, 'max_cat_to_onehot': None, 'max_delta_step': None, 'max_depth': None, 'max_leaves': None, 'min_child_weight': None, 'missing': nan, 'monotone_constraints': None, 'multi_strategy': None, 'n_estimators': 1000, 'n_jobs': -1, 'num_parallel_tree': None, 'random_state': 42, 'reg_alpha': None, 'reg_lambda': None, 'sampling_method': None, 'scale_pos_weight': None, 'subsample': None, 'tree_method': None, 'validate_parameters': None, 'verbosity': None}

## MODEL SCORES
- MAE:  0.07666475406991717 (mean absolute error)
- MedAE:  0.05819989577484108 (median absolute error)
- MSE:  0.010768673391665992 (mean squared error)
- RMSE:  0.10377221878550151 (root mean squared error)
- MAXE:  2.227963451794434 (max error)
- MAPE:  0.009 (mean absolute percentage error)
- R2:  0.9997193889979188
../../_images/120df4a91f4acfe6fe35542b96c8627bddea2378b52fd99a072c79f23c05b01f.png ../../_images/1d18cfd780baf7b5754aca903b3c127e9a443207f77e8c215fa2d3d30dbfa8d3.png

Fill TS_GF1_0.4_1#

TARGET_COL = 'TS_GF1_0.4_1'
TARGET_GAPFILLED_COL = f'{TARGET_COL}_gfXG'
FLAG_GAPFILLED_COL = f'FLAG_{TARGET_GAPFILLED_COL}_ISFILLED'

# Dataframe for gap-filling
_df = pd.DataFrame()
_df[TARGET_COL] = df[TARGET_COL].copy()
_df['TS_GF1_0.04_1_gfXG'] = df['TS_GF1_0.04_1_gfXG'].copy()
_df['TS_GF1_0.15_1_gfXG'] = df['TS_GF1_0.15_1_gfXG'].copy()

# XGBoost
xgb = XGBoostTS(
    input_df=_df,
    target_col=TARGET_COL,
    features_lag=[-10, -1],
    features_lag_exclude_cols=None,
    perm_n_repeats=10,
    include_timestamp_as_features=True,
    add_continuous_record_number=True,
    n_estimators=1000,
    random_state=42,
    early_stopping_rounds=50,
    n_jobs=-1
)
xgb.trainmodel(showplot_scores=False, showplot_importance=False)
xgb.report_traintest()
xgb.fillgaps(showplot_scores=False, showplot_importance=False)
xgb.report_gapfilling()
results = xgb.gapfilling_df_

# Add results to main data
df = pd.concat([df, results[[TARGET_GAPFILLED_COL, FLAG_GAPFILLED_COL]]], axis=1)

# Plot
plotdf = df[[TARGET_COL, TARGET_GAPFILLED_COL, FLAG_GAPFILLED_COL]].copy()
plotdf.plot(x_compat=True, title=TARGET_COL, subplots=True, figsize=(20, 6));
locs = (plotdf.index.year == 2011) & (plotdf.index.month == 8)
plotdf[locs].plot(x_compat=True, title=TARGET_COL, subplots=True, figsize=(20, 6));
Adding new data columns ...
++ Added new columns with timestamp info: ['.YEAR', '.SEASON', '.MONTH', '.WEEK', '.DOY', '.HOUR', '.YEARMONTH', '.YEARDOY', '.YEARWEEK'] 
++ Added new column .RECORDNUMBER with record numbers from 1 to 350640.

Training final model ...
>>> Training model <class 'xgboost.sklearn.XGBRegressor'> based on data between 2005-09-09 10:15:00 and 2024-12-31 23:15:00 ...
>>> Fitting model to training data ...
[0]	validation_0-rmse:3.84965	validation_1-rmse:3.84616
[1]	validation_0-rmse:2.71625	validation_1-rmse:2.71394
[2]	validation_0-rmse:1.92710	validation_1-rmse:1.92541
[3]	validation_0-rmse:1.38134	validation_1-rmse:1.38024
[4]	validation_0-rmse:1.00683	validation_1-rmse:1.00627
[5]	validation_0-rmse:0.75413	validation_1-rmse:0.75427
[6]	validation_0-rmse:0.58644	validation_1-rmse:0.58703
[7]	validation_0-rmse:0.47932	validation_1-rmse:0.48022
[8]	validation_0-rmse:0.40890	validation_1-rmse:0.41008
[9]	validation_0-rmse:0.36666	validation_1-rmse:0.36809
[10]	validation_0-rmse:0.33937	validation_1-rmse:0.34114
[11]	validation_0-rmse:0.31951	validation_1-rmse:0.32166
[12]	validation_0-rmse:0.30753	validation_1-rmse:0.30984
[13]	validation_0-rmse:0.29701	validation_1-rmse:0.29896
[14]	validation_0-rmse:0.29050	validation_1-rmse:0.29268
[15]	validation_0-rmse:0.28485	validation_1-rmse:0.28694
[16]	validation_0-rmse:0.28087	validation_1-rmse:0.28314
[17]	validation_0-rmse:0.27371	validation_1-rmse:0.27598
[18]	validation_0-rmse:0.26941	validation_1-rmse:0.27179
[19]	validation_0-rmse:0.26620	validation_1-rmse:0.26895
[20]	validation_0-rmse:0.26260	validation_1-rmse:0.26511
[21]	validation_0-rmse:0.26061	validation_1-rmse:0.26322
[22]	validation_0-rmse:0.25506	validation_1-rmse:0.25751
[23]	validation_0-rmse:0.25241	validation_1-rmse:0.25503
[24]	validation_0-rmse:0.25013	validation_1-rmse:0.25285
[25]	validation_0-rmse:0.24839	validation_1-rmse:0.25116
[26]	validation_0-rmse:0.24676	validation_1-rmse:0.24965
[27]	validation_0-rmse:0.24433	validation_1-rmse:0.24731
[28]	validation_0-rmse:0.24202	validation_1-rmse:0.24508
[29]	validation_0-rmse:0.24038	validation_1-rmse:0.24338
[30]	validation_0-rmse:0.23776	validation_1-rmse:0.24085
[31]	validation_0-rmse:0.23657	validation_1-rmse:0.23978
[32]	validation_0-rmse:0.23229	validation_1-rmse:0.23552
[33]	validation_0-rmse:0.22959	validation_1-rmse:0.23282
[34]	validation_0-rmse:0.22843	validation_1-rmse:0.23176
[35]	validation_0-rmse:0.22705	validation_1-rmse:0.23043
[36]	validation_0-rmse:0.22511	validation_1-rmse:0.22852
[37]	validation_0-rmse:0.22319	validation_1-rmse:0.22667
[38]	validation_0-rmse:0.22207	validation_1-rmse:0.22559
[39]	validation_0-rmse:0.21847	validation_1-rmse:0.22188
[40]	validation_0-rmse:0.21764	validation_1-rmse:0.22112
[41]	validation_0-rmse:0.21523	validation_1-rmse:0.21891
[42]	validation_0-rmse:0.21402	validation_1-rmse:0.21776
[43]	validation_0-rmse:0.21219	validation_1-rmse:0.21599
[44]	validation_0-rmse:0.21095	validation_1-rmse:0.21487
[45]	validation_0-rmse:0.20984	validation_1-rmse:0.21385
[46]	validation_0-rmse:0.20847	validation_1-rmse:0.21252
[47]	validation_0-rmse:0.20717	validation_1-rmse:0.21131
[48]	validation_0-rmse:0.20599	validation_1-rmse:0.21027
[49]	validation_0-rmse:0.20528	validation_1-rmse:0.20960
[50]	validation_0-rmse:0.20376	validation_1-rmse:0.20822
[51]	validation_0-rmse:0.20227	validation_1-rmse:0.20672
[52]	validation_0-rmse:0.20121	validation_1-rmse:0.20568
[53]	validation_0-rmse:0.20032	validation_1-rmse:0.20485
[54]	validation_0-rmse:0.19823	validation_1-rmse:0.20277
[55]	validation_0-rmse:0.19740	validation_1-rmse:0.20201
[56]	validation_0-rmse:0.19649	validation_1-rmse:0.20117
[57]	validation_0-rmse:0.19554	validation_1-rmse:0.20028
[58]	validation_0-rmse:0.19407	validation_1-rmse:0.19878
[59]	validation_0-rmse:0.19281	validation_1-rmse:0.19747
[60]	validation_0-rmse:0.19149	validation_1-rmse:0.19626
[61]	validation_0-rmse:0.19066	validation_1-rmse:0.19542
[62]	validation_0-rmse:0.18992	validation_1-rmse:0.19476
[63]	validation_0-rmse:0.18843	validation_1-rmse:0.19332
[64]	validation_0-rmse:0.18766	validation_1-rmse:0.19260
[65]	validation_0-rmse:0.18666	validation_1-rmse:0.19164
[66]	validation_0-rmse:0.18583	validation_1-rmse:0.19087
[67]	validation_0-rmse:0.18514	validation_1-rmse:0.19022
[68]	validation_0-rmse:0.18436	validation_1-rmse:0.18946
[69]	validation_0-rmse:0.18347	validation_1-rmse:0.18861
[70]	validation_0-rmse:0.18305	validation_1-rmse:0.18820
[71]	validation_0-rmse:0.18206	validation_1-rmse:0.18727
[72]	validation_0-rmse:0.18139	validation_1-rmse:0.18664
[73]	validation_0-rmse:0.18041	validation_1-rmse:0.18564
[74]	validation_0-rmse:0.17995	validation_1-rmse:0.18519
[75]	validation_0-rmse:0.17947	validation_1-rmse:0.18477
[76]	validation_0-rmse:0.17806	validation_1-rmse:0.18336
[77]	validation_0-rmse:0.17701	validation_1-rmse:0.18230
[78]	validation_0-rmse:0.17645	validation_1-rmse:0.18177
[79]	validation_0-rmse:0.17602	validation_1-rmse:0.18137
[80]	validation_0-rmse:0.17520	validation_1-rmse:0.18062
[81]	validation_0-rmse:0.17457	validation_1-rmse:0.18002
[82]	validation_0-rmse:0.17369	validation_1-rmse:0.17914
[83]	validation_0-rmse:0.17285	validation_1-rmse:0.17836
[84]	validation_0-rmse:0.17209	validation_1-rmse:0.17757
[85]	validation_0-rmse:0.17149	validation_1-rmse:0.17704
[86]	validation_0-rmse:0.17097	validation_1-rmse:0.17656
[87]	validation_0-rmse:0.17023	validation_1-rmse:0.17583
[88]	validation_0-rmse:0.16940	validation_1-rmse:0.17503
[89]	validation_0-rmse:0.16909	validation_1-rmse:0.17479
[90]	validation_0-rmse:0.16806	validation_1-rmse:0.17379
[91]	validation_0-rmse:0.16763	validation_1-rmse:0.17344
[92]	validation_0-rmse:0.16698	validation_1-rmse:0.17284
[93]	validation_0-rmse:0.16636	validation_1-rmse:0.17227
[94]	validation_0-rmse:0.16514	validation_1-rmse:0.17113
[95]	validation_0-rmse:0.16449	validation_1-rmse:0.17046
[96]	validation_0-rmse:0.16406	validation_1-rmse:0.17005
[97]	validation_0-rmse:0.16365	validation_1-rmse:0.16968
[98]	validation_0-rmse:0.16330	validation_1-rmse:0.16935
[99]	validation_0-rmse:0.16276	validation_1-rmse:0.16879
[100]	validation_0-rmse:0.16258	validation_1-rmse:0.16863
[101]	validation_0-rmse:0.16210	validation_1-rmse:0.16816
[102]	validation_0-rmse:0.16183	validation_1-rmse:0.16793
[103]	validation_0-rmse:0.16129	validation_1-rmse:0.16744
[104]	validation_0-rmse:0.16047	validation_1-rmse:0.16669
[105]	validation_0-rmse:0.15992	validation_1-rmse:0.16617
[106]	validation_0-rmse:0.15907	validation_1-rmse:0.16535
[107]	validation_0-rmse:0.15860	validation_1-rmse:0.16496
[108]	validation_0-rmse:0.15828	validation_1-rmse:0.16466
[109]	validation_0-rmse:0.15797	validation_1-rmse:0.16438
[110]	validation_0-rmse:0.15731	validation_1-rmse:0.16375
[111]	validation_0-rmse:0.15683	validation_1-rmse:0.16326
[112]	validation_0-rmse:0.15637	validation_1-rmse:0.16287
[113]	validation_0-rmse:0.15557	validation_1-rmse:0.16211
[114]	validation_0-rmse:0.15540	validation_1-rmse:0.16197
[115]	validation_0-rmse:0.15503	validation_1-rmse:0.16164
[116]	validation_0-rmse:0.15427	validation_1-rmse:0.16091
[117]	validation_0-rmse:0.15391	validation_1-rmse:0.16060
[118]	validation_0-rmse:0.15293	validation_1-rmse:0.15966
[119]	validation_0-rmse:0.15257	validation_1-rmse:0.15929
[120]	validation_0-rmse:0.15229	validation_1-rmse:0.15903
[121]	validation_0-rmse:0.15191	validation_1-rmse:0.15867
[122]	validation_0-rmse:0.15157	validation_1-rmse:0.15841
[123]	validation_0-rmse:0.15101	validation_1-rmse:0.15792
[124]	validation_0-rmse:0.15050	validation_1-rmse:0.15742
[125]	validation_0-rmse:0.15013	validation_1-rmse:0.15708
[126]	validation_0-rmse:0.14968	validation_1-rmse:0.15666
[127]	validation_0-rmse:0.14920	validation_1-rmse:0.15618
[128]	validation_0-rmse:0.14860	validation_1-rmse:0.15557
[129]	validation_0-rmse:0.14829	validation_1-rmse:0.15527
[130]	validation_0-rmse:0.14793	validation_1-rmse:0.15488
[131]	validation_0-rmse:0.14751	validation_1-rmse:0.15447
[132]	validation_0-rmse:0.14700	validation_1-rmse:0.15397
[133]	validation_0-rmse:0.14633	validation_1-rmse:0.15333
[134]	validation_0-rmse:0.14588	validation_1-rmse:0.15289
[135]	validation_0-rmse:0.14546	validation_1-rmse:0.15250
[136]	validation_0-rmse:0.14527	validation_1-rmse:0.15233
[137]	validation_0-rmse:0.14483	validation_1-rmse:0.15192
[138]	validation_0-rmse:0.14450	validation_1-rmse:0.15163
[139]	validation_0-rmse:0.14356	validation_1-rmse:0.15073
[140]	validation_0-rmse:0.14324	validation_1-rmse:0.15042
[141]	validation_0-rmse:0.14304	validation_1-rmse:0.15023
[142]	validation_0-rmse:0.14282	validation_1-rmse:0.15000
[143]	validation_0-rmse:0.14235	validation_1-rmse:0.14960
[144]	validation_0-rmse:0.14209	validation_1-rmse:0.14935
[145]	validation_0-rmse:0.14164	validation_1-rmse:0.14896
[146]	validation_0-rmse:0.14143	validation_1-rmse:0.14877
[147]	validation_0-rmse:0.14105	validation_1-rmse:0.14845
[148]	validation_0-rmse:0.14036	validation_1-rmse:0.14777
[149]	validation_0-rmse:0.14011	validation_1-rmse:0.14757
[150]	validation_0-rmse:0.13971	validation_1-rmse:0.14720
[151]	validation_0-rmse:0.13914	validation_1-rmse:0.14667
[152]	validation_0-rmse:0.13878	validation_1-rmse:0.14635
[153]	validation_0-rmse:0.13846	validation_1-rmse:0.14605
[154]	validation_0-rmse:0.13799	validation_1-rmse:0.14562
[155]	validation_0-rmse:0.13761	validation_1-rmse:0.14529
[156]	validation_0-rmse:0.13717	validation_1-rmse:0.14488
[157]	validation_0-rmse:0.13709	validation_1-rmse:0.14480
[158]	validation_0-rmse:0.13680	validation_1-rmse:0.14449
[159]	validation_0-rmse:0.13632	validation_1-rmse:0.14402
[160]	validation_0-rmse:0.13614	validation_1-rmse:0.14387
[161]	validation_0-rmse:0.13564	validation_1-rmse:0.14337
[162]	validation_0-rmse:0.13516	validation_1-rmse:0.14293
[163]	validation_0-rmse:0.13470	validation_1-rmse:0.14252
[164]	validation_0-rmse:0.13453	validation_1-rmse:0.14240
[165]	validation_0-rmse:0.13396	validation_1-rmse:0.14184
[166]	validation_0-rmse:0.13362	validation_1-rmse:0.14155
[167]	validation_0-rmse:0.13315	validation_1-rmse:0.14110
[168]	validation_0-rmse:0.13281	validation_1-rmse:0.14077
[169]	validation_0-rmse:0.13266	validation_1-rmse:0.14065
[170]	validation_0-rmse:0.13250	validation_1-rmse:0.14050
[171]	validation_0-rmse:0.13206	validation_1-rmse:0.14008
[172]	validation_0-rmse:0.13181	validation_1-rmse:0.13987
[173]	validation_0-rmse:0.13152	validation_1-rmse:0.13962
[174]	validation_0-rmse:0.13137	validation_1-rmse:0.13953
[175]	validation_0-rmse:0.13099	validation_1-rmse:0.13916
[176]	validation_0-rmse:0.13091	validation_1-rmse:0.13909
[177]	validation_0-rmse:0.13060	validation_1-rmse:0.13882
[178]	validation_0-rmse:0.13021	validation_1-rmse:0.13838
[179]	validation_0-rmse:0.12976	validation_1-rmse:0.13801
[180]	validation_0-rmse:0.12955	validation_1-rmse:0.13783
[181]	validation_0-rmse:0.12918	validation_1-rmse:0.13746
[182]	validation_0-rmse:0.12898	validation_1-rmse:0.13731
[183]	validation_0-rmse:0.12865	validation_1-rmse:0.13705
[184]	validation_0-rmse:0.12823	validation_1-rmse:0.13658
[185]	validation_0-rmse:0.12777	validation_1-rmse:0.13613
[186]	validation_0-rmse:0.12753	validation_1-rmse:0.13594
[187]	validation_0-rmse:0.12736	validation_1-rmse:0.13579
[188]	validation_0-rmse:0.12693	validation_1-rmse:0.13534
[189]	validation_0-rmse:0.12681	validation_1-rmse:0.13524
[190]	validation_0-rmse:0.12657	validation_1-rmse:0.13504
[191]	validation_0-rmse:0.12636	validation_1-rmse:0.13486
[192]	validation_0-rmse:0.12614	validation_1-rmse:0.13469
[193]	validation_0-rmse:0.12598	validation_1-rmse:0.13454
[194]	validation_0-rmse:0.12567	validation_1-rmse:0.13422
[195]	validation_0-rmse:0.12541	validation_1-rmse:0.13397
[196]	validation_0-rmse:0.12523	validation_1-rmse:0.13380
[197]	validation_0-rmse:0.12487	validation_1-rmse:0.13345
[198]	validation_0-rmse:0.12436	validation_1-rmse:0.13295
[199]	validation_0-rmse:0.12399	validation_1-rmse:0.13264
[200]	validation_0-rmse:0.12368	validation_1-rmse:0.13234
[201]	validation_0-rmse:0.12348	validation_1-rmse:0.13217
[202]	validation_0-rmse:0.12336	validation_1-rmse:0.13206
[203]	validation_0-rmse:0.12299	validation_1-rmse:0.13170
[204]	validation_0-rmse:0.12285	validation_1-rmse:0.13158
[205]	validation_0-rmse:0.12256	validation_1-rmse:0.13136
[206]	validation_0-rmse:0.12246	validation_1-rmse:0.13126
[207]	validation_0-rmse:0.12227	validation_1-rmse:0.13106
[208]	validation_0-rmse:0.12197	validation_1-rmse:0.13080
[209]	validation_0-rmse:0.12171	validation_1-rmse:0.13058
[210]	validation_0-rmse:0.12159	validation_1-rmse:0.13046
[211]	validation_0-rmse:0.12126	validation_1-rmse:0.13017
[212]	validation_0-rmse:0.12106	validation_1-rmse:0.12996
[213]	validation_0-rmse:0.12075	validation_1-rmse:0.12970
[214]	validation_0-rmse:0.12058	validation_1-rmse:0.12956
[215]	validation_0-rmse:0.12028	validation_1-rmse:0.12926
[216]	validation_0-rmse:0.12002	validation_1-rmse:0.12905
[217]	validation_0-rmse:0.11975	validation_1-rmse:0.12879
[218]	validation_0-rmse:0.11949	validation_1-rmse:0.12854
[219]	validation_0-rmse:0.11933	validation_1-rmse:0.12843
[220]	validation_0-rmse:0.11910	validation_1-rmse:0.12823
[221]	validation_0-rmse:0.11887	validation_1-rmse:0.12802
[222]	validation_0-rmse:0.11861	validation_1-rmse:0.12781
[223]	validation_0-rmse:0.11828	validation_1-rmse:0.12748
[224]	validation_0-rmse:0.11816	validation_1-rmse:0.12737
[225]	validation_0-rmse:0.11795	validation_1-rmse:0.12717
[226]	validation_0-rmse:0.11785	validation_1-rmse:0.12711
[227]	validation_0-rmse:0.11750	validation_1-rmse:0.12677
[228]	validation_0-rmse:0.11725	validation_1-rmse:0.12658
[229]	validation_0-rmse:0.11691	validation_1-rmse:0.12627
[230]	validation_0-rmse:0.11682	validation_1-rmse:0.12620
[231]	validation_0-rmse:0.11675	validation_1-rmse:0.12614
[232]	validation_0-rmse:0.11655	validation_1-rmse:0.12599
[233]	validation_0-rmse:0.11627	validation_1-rmse:0.12573
[234]	validation_0-rmse:0.11590	validation_1-rmse:0.12537
[235]	validation_0-rmse:0.11564	validation_1-rmse:0.12514
[236]	validation_0-rmse:0.11546	validation_1-rmse:0.12500
[237]	validation_0-rmse:0.11526	validation_1-rmse:0.12484
[238]	validation_0-rmse:0.11515	validation_1-rmse:0.12474
[239]	validation_0-rmse:0.11508	validation_1-rmse:0.12469
[240]	validation_0-rmse:0.11484	validation_1-rmse:0.12448
[241]	validation_0-rmse:0.11456	validation_1-rmse:0.12421
[242]	validation_0-rmse:0.11445	validation_1-rmse:0.12409
[243]	validation_0-rmse:0.11419	validation_1-rmse:0.12388
[244]	validation_0-rmse:0.11391	validation_1-rmse:0.12362
[245]	validation_0-rmse:0.11376	validation_1-rmse:0.12348
[246]	validation_0-rmse:0.11347	validation_1-rmse:0.12319
[247]	validation_0-rmse:0.11336	validation_1-rmse:0.12309
[248]	validation_0-rmse:0.11317	validation_1-rmse:0.12289
[249]	validation_0-rmse:0.11303	validation_1-rmse:0.12276
[250]	validation_0-rmse:0.11289	validation_1-rmse:0.12260
[251]	validation_0-rmse:0.11274	validation_1-rmse:0.12249
[252]	validation_0-rmse:0.11237	validation_1-rmse:0.12216
[253]	validation_0-rmse:0.11222	validation_1-rmse:0.12203
[254]	validation_0-rmse:0.11199	validation_1-rmse:0.12180
[255]	validation_0-rmse:0.11179	validation_1-rmse:0.12162
[256]	validation_0-rmse:0.11170	validation_1-rmse:0.12157
[257]	validation_0-rmse:0.11142	validation_1-rmse:0.12128
[258]	validation_0-rmse:0.11133	validation_1-rmse:0.12121
[259]	validation_0-rmse:0.11108	validation_1-rmse:0.12104
[260]	validation_0-rmse:0.11089	validation_1-rmse:0.12088
[261]	validation_0-rmse:0.11066	validation_1-rmse:0.12068
[262]	validation_0-rmse:0.11032	validation_1-rmse:0.12039
[263]	validation_0-rmse:0.11005	validation_1-rmse:0.12017
[264]	validation_0-rmse:0.10996	validation_1-rmse:0.12009
[265]	validation_0-rmse:0.10984	validation_1-rmse:0.11997
[266]	validation_0-rmse:0.10958	validation_1-rmse:0.11972
[267]	validation_0-rmse:0.10954	validation_1-rmse:0.11968
[268]	validation_0-rmse:0.10940	validation_1-rmse:0.11956
[269]	validation_0-rmse:0.10917	validation_1-rmse:0.11937
[270]	validation_0-rmse:0.10897	validation_1-rmse:0.11921
[271]	validation_0-rmse:0.10858	validation_1-rmse:0.11884
[272]	validation_0-rmse:0.10843	validation_1-rmse:0.11871
[273]	validation_0-rmse:0.10834	validation_1-rmse:0.11865
[274]	validation_0-rmse:0.10818	validation_1-rmse:0.11853
[275]	validation_0-rmse:0.10809	validation_1-rmse:0.11844
[276]	validation_0-rmse:0.10789	validation_1-rmse:0.11828
[277]	validation_0-rmse:0.10770	validation_1-rmse:0.11808
[278]	validation_0-rmse:0.10753	validation_1-rmse:0.11794
[279]	validation_0-rmse:0.10745	validation_1-rmse:0.11787
[280]	validation_0-rmse:0.10708	validation_1-rmse:0.11752
[281]	validation_0-rmse:0.10682	validation_1-rmse:0.11731
[282]	validation_0-rmse:0.10669	validation_1-rmse:0.11723
[283]	validation_0-rmse:0.10654	validation_1-rmse:0.11711
[284]	validation_0-rmse:0.10648	validation_1-rmse:0.11706
[285]	validation_0-rmse:0.10620	validation_1-rmse:0.11680
[286]	validation_0-rmse:0.10615	validation_1-rmse:0.11676
[287]	validation_0-rmse:0.10606	validation_1-rmse:0.11669
[288]	validation_0-rmse:0.10587	validation_1-rmse:0.11651
[289]	validation_0-rmse:0.10566	validation_1-rmse:0.11635
[290]	validation_0-rmse:0.10558	validation_1-rmse:0.11627
[291]	validation_0-rmse:0.10534	validation_1-rmse:0.11607
[292]	validation_0-rmse:0.10516	validation_1-rmse:0.11589
[293]	validation_0-rmse:0.10509	validation_1-rmse:0.11583
[294]	validation_0-rmse:0.10485	validation_1-rmse:0.11564
[295]	validation_0-rmse:0.10477	validation_1-rmse:0.11557
[296]	validation_0-rmse:0.10449	validation_1-rmse:0.11530
[297]	validation_0-rmse:0.10424	validation_1-rmse:0.11507
[298]	validation_0-rmse:0.10404	validation_1-rmse:0.11489
[299]	validation_0-rmse:0.10389	validation_1-rmse:0.11475
[300]	validation_0-rmse:0.10367	validation_1-rmse:0.11460
[301]	validation_0-rmse:0.10349	validation_1-rmse:0.11444
[302]	validation_0-rmse:0.10331	validation_1-rmse:0.11429
[303]	validation_0-rmse:0.10312	validation_1-rmse:0.11415
[304]	validation_0-rmse:0.10309	validation_1-rmse:0.11412
[305]	validation_0-rmse:0.10287	validation_1-rmse:0.11394
[306]	validation_0-rmse:0.10265	validation_1-rmse:0.11371
[307]	validation_0-rmse:0.10252	validation_1-rmse:0.11360
[308]	validation_0-rmse:0.10236	validation_1-rmse:0.11345
[309]	validation_0-rmse:0.10230	validation_1-rmse:0.11341
[310]	validation_0-rmse:0.10216	validation_1-rmse:0.11326
[311]	validation_0-rmse:0.10192	validation_1-rmse:0.11307
[312]	validation_0-rmse:0.10179	validation_1-rmse:0.11294
[313]	validation_0-rmse:0.10158	validation_1-rmse:0.11276
[314]	validation_0-rmse:0.10146	validation_1-rmse:0.11266
[315]	validation_0-rmse:0.10137	validation_1-rmse:0.11258
[316]	validation_0-rmse:0.10116	validation_1-rmse:0.11239
[317]	validation_0-rmse:0.10102	validation_1-rmse:0.11228
[318]	validation_0-rmse:0.10089	validation_1-rmse:0.11217
[319]	validation_0-rmse:0.10072	validation_1-rmse:0.11201
[320]	validation_0-rmse:0.10052	validation_1-rmse:0.11182
[321]	validation_0-rmse:0.10037	validation_1-rmse:0.11169
[322]	validation_0-rmse:0.10032	validation_1-rmse:0.11165
[323]	validation_0-rmse:0.10017	validation_1-rmse:0.11150
[324]	validation_0-rmse:0.10005	validation_1-rmse:0.11143
[325]	validation_0-rmse:0.09991	validation_1-rmse:0.11130
[326]	validation_0-rmse:0.09976	validation_1-rmse:0.11119
[327]	validation_0-rmse:0.09962	validation_1-rmse:0.11108
[328]	validation_0-rmse:0.09935	validation_1-rmse:0.11082
[329]	validation_0-rmse:0.09923	validation_1-rmse:0.11074
[330]	validation_0-rmse:0.09912	validation_1-rmse:0.11064
[331]	validation_0-rmse:0.09908	validation_1-rmse:0.11062
[332]	validation_0-rmse:0.09897	validation_1-rmse:0.11052
[333]	validation_0-rmse:0.09886	validation_1-rmse:0.11044
[334]	validation_0-rmse:0.09879	validation_1-rmse:0.11039
[335]	validation_0-rmse:0.09868	validation_1-rmse:0.11030
[336]	validation_0-rmse:0.09848	validation_1-rmse:0.11012
[337]	validation_0-rmse:0.09834	validation_1-rmse:0.10999
[338]	validation_0-rmse:0.09821	validation_1-rmse:0.10988
[339]	validation_0-rmse:0.09799	validation_1-rmse:0.10968
[340]	validation_0-rmse:0.09783	validation_1-rmse:0.10956
[341]	validation_0-rmse:0.09777	validation_1-rmse:0.10950
[342]	validation_0-rmse:0.09757	validation_1-rmse:0.10931
[343]	validation_0-rmse:0.09749	validation_1-rmse:0.10924
[344]	validation_0-rmse:0.09729	validation_1-rmse:0.10906
[345]	validation_0-rmse:0.09709	validation_1-rmse:0.10887
[346]	validation_0-rmse:0.09695	validation_1-rmse:0.10875
[347]	validation_0-rmse:0.09687	validation_1-rmse:0.10866
[348]	validation_0-rmse:0.09669	validation_1-rmse:0.10850
[349]	validation_0-rmse:0.09652	validation_1-rmse:0.10834
[350]	validation_0-rmse:0.09637	validation_1-rmse:0.10824
[351]	validation_0-rmse:0.09616	validation_1-rmse:0.10802
[352]	validation_0-rmse:0.09605	validation_1-rmse:0.10793
[353]	validation_0-rmse:0.09592	validation_1-rmse:0.10784
[354]	validation_0-rmse:0.09585	validation_1-rmse:0.10778
[355]	validation_0-rmse:0.09579	validation_1-rmse:0.10774
[356]	validation_0-rmse:0.09565	validation_1-rmse:0.10761
[357]	validation_0-rmse:0.09560	validation_1-rmse:0.10759
[358]	validation_0-rmse:0.09545	validation_1-rmse:0.10745
[359]	validation_0-rmse:0.09532	validation_1-rmse:0.10732
[360]	validation_0-rmse:0.09510	validation_1-rmse:0.10711
[361]	validation_0-rmse:0.09500	validation_1-rmse:0.10702
[362]	validation_0-rmse:0.09490	validation_1-rmse:0.10695
[363]	validation_0-rmse:0.09484	validation_1-rmse:0.10690
[364]	validation_0-rmse:0.09471	validation_1-rmse:0.10680
[365]	validation_0-rmse:0.09468	validation_1-rmse:0.10677
[366]	validation_0-rmse:0.09451	validation_1-rmse:0.10662
[367]	validation_0-rmse:0.09441	validation_1-rmse:0.10652
[368]	validation_0-rmse:0.09431	validation_1-rmse:0.10643
[369]	validation_0-rmse:0.09424	validation_1-rmse:0.10638
[370]	validation_0-rmse:0.09417	validation_1-rmse:0.10633
[371]	validation_0-rmse:0.09399	validation_1-rmse:0.10613
[372]	validation_0-rmse:0.09375	validation_1-rmse:0.10590
[373]	validation_0-rmse:0.09361	validation_1-rmse:0.10578
[374]	validation_0-rmse:0.09348	validation_1-rmse:0.10567
[375]	validation_0-rmse:0.09333	validation_1-rmse:0.10554
[376]	validation_0-rmse:0.09318	validation_1-rmse:0.10543
[377]	validation_0-rmse:0.09301	validation_1-rmse:0.10526
[378]	validation_0-rmse:0.09285	validation_1-rmse:0.10511
[379]	validation_0-rmse:0.09276	validation_1-rmse:0.10504
[380]	validation_0-rmse:0.09267	validation_1-rmse:0.10497
[381]	validation_0-rmse:0.09257	validation_1-rmse:0.10490
[382]	validation_0-rmse:0.09244	validation_1-rmse:0.10479
[383]	validation_0-rmse:0.09233	validation_1-rmse:0.10469
[384]	validation_0-rmse:0.09219	validation_1-rmse:0.10459
[385]	validation_0-rmse:0.09208	validation_1-rmse:0.10451
[386]	validation_0-rmse:0.09196	validation_1-rmse:0.10440
[387]	validation_0-rmse:0.09190	validation_1-rmse:0.10434
[388]	validation_0-rmse:0.09177	validation_1-rmse:0.10421
[389]	validation_0-rmse:0.09170	validation_1-rmse:0.10416
[390]	validation_0-rmse:0.09168	validation_1-rmse:0.10414
[391]	validation_0-rmse:0.09156	validation_1-rmse:0.10407
[392]	validation_0-rmse:0.09147	validation_1-rmse:0.10399
[393]	validation_0-rmse:0.09137	validation_1-rmse:0.10390
[394]	validation_0-rmse:0.09127	validation_1-rmse:0.10380
[395]	validation_0-rmse:0.09120	validation_1-rmse:0.10374
[396]	validation_0-rmse:0.09100	validation_1-rmse:0.10354
[397]	validation_0-rmse:0.09086	validation_1-rmse:0.10341
[398]	validation_0-rmse:0.09053	validation_1-rmse:0.10310
[399]	validation_0-rmse:0.09035	validation_1-rmse:0.10293
[400]	validation_0-rmse:0.09021	validation_1-rmse:0.10283
[401]	validation_0-rmse:0.09012	validation_1-rmse:0.10273
[402]	validation_0-rmse:0.09001	validation_1-rmse:0.10263
[403]	validation_0-rmse:0.08988	validation_1-rmse:0.10254
[404]	validation_0-rmse:0.08978	validation_1-rmse:0.10246
[405]	validation_0-rmse:0.08971	validation_1-rmse:0.10242
[406]	validation_0-rmse:0.08967	validation_1-rmse:0.10239
[407]	validation_0-rmse:0.08951	validation_1-rmse:0.10226
[408]	validation_0-rmse:0.08941	validation_1-rmse:0.10217
[409]	validation_0-rmse:0.08932	validation_1-rmse:0.10208
[410]	validation_0-rmse:0.08917	validation_1-rmse:0.10193
[411]	validation_0-rmse:0.08912	validation_1-rmse:0.10190
[412]	validation_0-rmse:0.08896	validation_1-rmse:0.10174
[413]	validation_0-rmse:0.08883	validation_1-rmse:0.10163
[414]	validation_0-rmse:0.08871	validation_1-rmse:0.10153
[415]	validation_0-rmse:0.08864	validation_1-rmse:0.10148
[416]	validation_0-rmse:0.08855	validation_1-rmse:0.10140
[417]	validation_0-rmse:0.08842	validation_1-rmse:0.10131
[418]	validation_0-rmse:0.08833	validation_1-rmse:0.10125
[419]	validation_0-rmse:0.08830	validation_1-rmse:0.10122
[420]	validation_0-rmse:0.08818	validation_1-rmse:0.10112
[421]	validation_0-rmse:0.08810	validation_1-rmse:0.10105
[422]	validation_0-rmse:0.08801	validation_1-rmse:0.10095
[423]	validation_0-rmse:0.08792	validation_1-rmse:0.10088
[424]	validation_0-rmse:0.08783	validation_1-rmse:0.10079
[425]	validation_0-rmse:0.08772	validation_1-rmse:0.10070
[426]	validation_0-rmse:0.08768	validation_1-rmse:0.10066
[427]	validation_0-rmse:0.08763	validation_1-rmse:0.10061
[428]	validation_0-rmse:0.08750	validation_1-rmse:0.10050
[429]	validation_0-rmse:0.08744	validation_1-rmse:0.10043
[430]	validation_0-rmse:0.08734	validation_1-rmse:0.10036
[431]	validation_0-rmse:0.08730	validation_1-rmse:0.10033
[432]	validation_0-rmse:0.08724	validation_1-rmse:0.10030
[433]	validation_0-rmse:0.08708	validation_1-rmse:0.10016
[434]	validation_0-rmse:0.08699	validation_1-rmse:0.10008
[435]	validation_0-rmse:0.08688	validation_1-rmse:0.09999
[436]	validation_0-rmse:0.08681	validation_1-rmse:0.09992
[437]	validation_0-rmse:0.08674	validation_1-rmse:0.09987
[438]	validation_0-rmse:0.08660	validation_1-rmse:0.09976
[439]	validation_0-rmse:0.08646	validation_1-rmse:0.09966
[440]	validation_0-rmse:0.08634	validation_1-rmse:0.09955
[441]	validation_0-rmse:0.08621	validation_1-rmse:0.09942
[442]	validation_0-rmse:0.08610	validation_1-rmse:0.09934
[443]	validation_0-rmse:0.08600	validation_1-rmse:0.09924
[444]	validation_0-rmse:0.08590	validation_1-rmse:0.09916
[445]	validation_0-rmse:0.08583	validation_1-rmse:0.09910
[446]	validation_0-rmse:0.08575	validation_1-rmse:0.09903
[447]	validation_0-rmse:0.08568	validation_1-rmse:0.09898
[448]	validation_0-rmse:0.08566	validation_1-rmse:0.09896
[449]	validation_0-rmse:0.08565	validation_1-rmse:0.09896
[450]	validation_0-rmse:0.08556	validation_1-rmse:0.09888
[451]	validation_0-rmse:0.08546	validation_1-rmse:0.09880
[452]	validation_0-rmse:0.08539	validation_1-rmse:0.09875
[453]	validation_0-rmse:0.08532	validation_1-rmse:0.09868
[454]	validation_0-rmse:0.08521	validation_1-rmse:0.09859
[455]	validation_0-rmse:0.08512	validation_1-rmse:0.09850
[456]	validation_0-rmse:0.08503	validation_1-rmse:0.09843
[457]	validation_0-rmse:0.08481	validation_1-rmse:0.09821
[458]	validation_0-rmse:0.08478	validation_1-rmse:0.09819
[459]	validation_0-rmse:0.08468	validation_1-rmse:0.09810
[460]	validation_0-rmse:0.08460	validation_1-rmse:0.09803
[461]	validation_0-rmse:0.08457	validation_1-rmse:0.09800
[462]	validation_0-rmse:0.08449	validation_1-rmse:0.09794
[463]	validation_0-rmse:0.08444	validation_1-rmse:0.09790
[464]	validation_0-rmse:0.08434	validation_1-rmse:0.09782
[465]	validation_0-rmse:0.08422	validation_1-rmse:0.09772
[466]	validation_0-rmse:0.08416	validation_1-rmse:0.09769
[467]	validation_0-rmse:0.08408	validation_1-rmse:0.09761
[468]	validation_0-rmse:0.08397	validation_1-rmse:0.09750
[469]	validation_0-rmse:0.08394	validation_1-rmse:0.09748
[470]	validation_0-rmse:0.08392	validation_1-rmse:0.09748
[471]	validation_0-rmse:0.08386	validation_1-rmse:0.09744
[472]	validation_0-rmse:0.08377	validation_1-rmse:0.09736
[473]	validation_0-rmse:0.08369	validation_1-rmse:0.09729
[474]	validation_0-rmse:0.08358	validation_1-rmse:0.09722
[475]	validation_0-rmse:0.08345	validation_1-rmse:0.09709
[476]	validation_0-rmse:0.08334	validation_1-rmse:0.09702
[477]	validation_0-rmse:0.08322	validation_1-rmse:0.09695
[478]	validation_0-rmse:0.08314	validation_1-rmse:0.09686
[479]	validation_0-rmse:0.08306	validation_1-rmse:0.09680
[480]	validation_0-rmse:0.08297	validation_1-rmse:0.09671
[481]	validation_0-rmse:0.08291	validation_1-rmse:0.09666
[482]	validation_0-rmse:0.08287	validation_1-rmse:0.09664
[483]	validation_0-rmse:0.08283	validation_1-rmse:0.09661
[484]	validation_0-rmse:0.08281	validation_1-rmse:0.09659
[485]	validation_0-rmse:0.08275	validation_1-rmse:0.09656
[486]	validation_0-rmse:0.08269	validation_1-rmse:0.09652
[487]	validation_0-rmse:0.08266	validation_1-rmse:0.09649
[488]	validation_0-rmse:0.08264	validation_1-rmse:0.09648
[489]	validation_0-rmse:0.08254	validation_1-rmse:0.09638
[490]	validation_0-rmse:0.08245	validation_1-rmse:0.09631
[491]	validation_0-rmse:0.08236	validation_1-rmse:0.09623
[492]	validation_0-rmse:0.08234	validation_1-rmse:0.09621
[493]	validation_0-rmse:0.08230	validation_1-rmse:0.09619
[494]	validation_0-rmse:0.08222	validation_1-rmse:0.09614
[495]	validation_0-rmse:0.08216	validation_1-rmse:0.09609
[496]	validation_0-rmse:0.08210	validation_1-rmse:0.09604
[497]	validation_0-rmse:0.08200	validation_1-rmse:0.09596
[498]	validation_0-rmse:0.08188	validation_1-rmse:0.09586
[499]	validation_0-rmse:0.08176	validation_1-rmse:0.09574
[500]	validation_0-rmse:0.08166	validation_1-rmse:0.09568
[501]	validation_0-rmse:0.08154	validation_1-rmse:0.09557
[502]	validation_0-rmse:0.08145	validation_1-rmse:0.09550
[503]	validation_0-rmse:0.08141	validation_1-rmse:0.09547
[504]	validation_0-rmse:0.08132	validation_1-rmse:0.09538
[505]	validation_0-rmse:0.08127	validation_1-rmse:0.09535
[506]	validation_0-rmse:0.08116	validation_1-rmse:0.09525
[507]	validation_0-rmse:0.08106	validation_1-rmse:0.09517
[508]	validation_0-rmse:0.08098	validation_1-rmse:0.09512
[509]	validation_0-rmse:0.08095	validation_1-rmse:0.09509
[510]	validation_0-rmse:0.08092	validation_1-rmse:0.09506
[511]	validation_0-rmse:0.08083	validation_1-rmse:0.09499
[512]	validation_0-rmse:0.08080	validation_1-rmse:0.09497
[513]	validation_0-rmse:0.08069	validation_1-rmse:0.09488
[514]	validation_0-rmse:0.08063	validation_1-rmse:0.09482
[515]	validation_0-rmse:0.08058	validation_1-rmse:0.09479
[516]	validation_0-rmse:0.08053	validation_1-rmse:0.09475
[517]	validation_0-rmse:0.08039	validation_1-rmse:0.09461
[518]	validation_0-rmse:0.08020	validation_1-rmse:0.09441
[519]	validation_0-rmse:0.08015	validation_1-rmse:0.09437
[520]	validation_0-rmse:0.08002	validation_1-rmse:0.09424
[521]	validation_0-rmse:0.07991	validation_1-rmse:0.09414
[522]	validation_0-rmse:0.07987	validation_1-rmse:0.09411
[523]	validation_0-rmse:0.07975	validation_1-rmse:0.09400
[524]	validation_0-rmse:0.07970	validation_1-rmse:0.09396
[525]	validation_0-rmse:0.07966	validation_1-rmse:0.09393
[526]	validation_0-rmse:0.07959	validation_1-rmse:0.09388
[527]	validation_0-rmse:0.07939	validation_1-rmse:0.09368
[528]	validation_0-rmse:0.07930	validation_1-rmse:0.09362
[529]	validation_0-rmse:0.07922	validation_1-rmse:0.09356
[530]	validation_0-rmse:0.07910	validation_1-rmse:0.09346
[531]	validation_0-rmse:0.07907	validation_1-rmse:0.09344
[532]	validation_0-rmse:0.07899	validation_1-rmse:0.09336
[533]	validation_0-rmse:0.07893	validation_1-rmse:0.09331
[534]	validation_0-rmse:0.07888	validation_1-rmse:0.09328
[535]	validation_0-rmse:0.07882	validation_1-rmse:0.09322
[536]	validation_0-rmse:0.07869	validation_1-rmse:0.09311
[537]	validation_0-rmse:0.07858	validation_1-rmse:0.09301
[538]	validation_0-rmse:0.07851	validation_1-rmse:0.09297
[539]	validation_0-rmse:0.07842	validation_1-rmse:0.09290
[540]	validation_0-rmse:0.07837	validation_1-rmse:0.09284
[541]	validation_0-rmse:0.07825	validation_1-rmse:0.09273
[542]	validation_0-rmse:0.07818	validation_1-rmse:0.09269
[543]	validation_0-rmse:0.07809	validation_1-rmse:0.09263
[544]	validation_0-rmse:0.07801	validation_1-rmse:0.09257
[545]	validation_0-rmse:0.07797	validation_1-rmse:0.09254
[546]	validation_0-rmse:0.07791	validation_1-rmse:0.09249
[547]	validation_0-rmse:0.07783	validation_1-rmse:0.09241
[548]	validation_0-rmse:0.07774	validation_1-rmse:0.09235
[549]	validation_0-rmse:0.07768	validation_1-rmse:0.09229
[550]	validation_0-rmse:0.07760	validation_1-rmse:0.09224
[551]	validation_0-rmse:0.07746	validation_1-rmse:0.09211
[552]	validation_0-rmse:0.07742	validation_1-rmse:0.09208
[553]	validation_0-rmse:0.07737	validation_1-rmse:0.09204
[554]	validation_0-rmse:0.07734	validation_1-rmse:0.09203
[555]	validation_0-rmse:0.07724	validation_1-rmse:0.09195
[556]	validation_0-rmse:0.07712	validation_1-rmse:0.09184
[557]	validation_0-rmse:0.07709	validation_1-rmse:0.09182
[558]	validation_0-rmse:0.07696	validation_1-rmse:0.09170
[559]	validation_0-rmse:0.07691	validation_1-rmse:0.09166
[560]	validation_0-rmse:0.07686	validation_1-rmse:0.09163
[561]	validation_0-rmse:0.07684	validation_1-rmse:0.09162
[562]	validation_0-rmse:0.07677	validation_1-rmse:0.09157
[563]	validation_0-rmse:0.07670	validation_1-rmse:0.09152
[564]	validation_0-rmse:0.07664	validation_1-rmse:0.09146
[565]	validation_0-rmse:0.07658	validation_1-rmse:0.09142
[566]	validation_0-rmse:0.07652	validation_1-rmse:0.09138
[567]	validation_0-rmse:0.07647	validation_1-rmse:0.09133
[568]	validation_0-rmse:0.07643	validation_1-rmse:0.09130
[569]	validation_0-rmse:0.07635	validation_1-rmse:0.09122
[570]	validation_0-rmse:0.07624	validation_1-rmse:0.09114
[571]	validation_0-rmse:0.07618	validation_1-rmse:0.09108
[572]	validation_0-rmse:0.07615	validation_1-rmse:0.09106
[573]	validation_0-rmse:0.07608	validation_1-rmse:0.09100
[574]	validation_0-rmse:0.07600	validation_1-rmse:0.09095
[575]	validation_0-rmse:0.07590	validation_1-rmse:0.09085
[576]	validation_0-rmse:0.07584	validation_1-rmse:0.09083
[577]	validation_0-rmse:0.07579	validation_1-rmse:0.09078
[578]	validation_0-rmse:0.07573	validation_1-rmse:0.09073
[579]	validation_0-rmse:0.07569	validation_1-rmse:0.09069
[580]	validation_0-rmse:0.07564	validation_1-rmse:0.09065
[581]	validation_0-rmse:0.07558	validation_1-rmse:0.09061
[582]	validation_0-rmse:0.07551	validation_1-rmse:0.09057
[583]	validation_0-rmse:0.07542	validation_1-rmse:0.09047
[584]	validation_0-rmse:0.07539	validation_1-rmse:0.09045
[585]	validation_0-rmse:0.07532	validation_1-rmse:0.09038
[586]	validation_0-rmse:0.07523	validation_1-rmse:0.09032
[587]	validation_0-rmse:0.07515	validation_1-rmse:0.09026
[588]	validation_0-rmse:0.07507	validation_1-rmse:0.09021
[589]	validation_0-rmse:0.07498	validation_1-rmse:0.09012
[590]	validation_0-rmse:0.07491	validation_1-rmse:0.09006
[591]	validation_0-rmse:0.07486	validation_1-rmse:0.09003
[592]	validation_0-rmse:0.07482	validation_1-rmse:0.09000
[593]	validation_0-rmse:0.07479	validation_1-rmse:0.08997
[594]	validation_0-rmse:0.07469	validation_1-rmse:0.08986
[595]	validation_0-rmse:0.07459	validation_1-rmse:0.08979
[596]	validation_0-rmse:0.07456	validation_1-rmse:0.08976
[597]	validation_0-rmse:0.07450	validation_1-rmse:0.08972
[598]	validation_0-rmse:0.07446	validation_1-rmse:0.08969
[599]	validation_0-rmse:0.07438	validation_1-rmse:0.08963
[600]	validation_0-rmse:0.07431	validation_1-rmse:0.08960
[601]	validation_0-rmse:0.07428	validation_1-rmse:0.08957
[602]	validation_0-rmse:0.07418	validation_1-rmse:0.08948
[603]	validation_0-rmse:0.07412	validation_1-rmse:0.08944
[604]	validation_0-rmse:0.07406	validation_1-rmse:0.08939
[605]	validation_0-rmse:0.07398	validation_1-rmse:0.08931
[606]	validation_0-rmse:0.07392	validation_1-rmse:0.08927
[607]	validation_0-rmse:0.07383	validation_1-rmse:0.08920
[608]	validation_0-rmse:0.07377	validation_1-rmse:0.08915
[609]	validation_0-rmse:0.07365	validation_1-rmse:0.08903
[610]	validation_0-rmse:0.07359	validation_1-rmse:0.08897
[611]	validation_0-rmse:0.07356	validation_1-rmse:0.08894
[612]	validation_0-rmse:0.07342	validation_1-rmse:0.08878
[613]	validation_0-rmse:0.07337	validation_1-rmse:0.08873
[614]	validation_0-rmse:0.07330	validation_1-rmse:0.08866
[615]	validation_0-rmse:0.07327	validation_1-rmse:0.08865
[616]	validation_0-rmse:0.07322	validation_1-rmse:0.08862
[617]	validation_0-rmse:0.07318	validation_1-rmse:0.08861
[618]	validation_0-rmse:0.07314	validation_1-rmse:0.08858
[619]	validation_0-rmse:0.07308	validation_1-rmse:0.08852
[620]	validation_0-rmse:0.07302	validation_1-rmse:0.08848
[621]	validation_0-rmse:0.07298	validation_1-rmse:0.08846
[622]	validation_0-rmse:0.07296	validation_1-rmse:0.08845
[623]	validation_0-rmse:0.07291	validation_1-rmse:0.08841
[624]	validation_0-rmse:0.07284	validation_1-rmse:0.08835
[625]	validation_0-rmse:0.07276	validation_1-rmse:0.08830
[626]	validation_0-rmse:0.07270	validation_1-rmse:0.08826
[627]	validation_0-rmse:0.07259	validation_1-rmse:0.08815
[628]	validation_0-rmse:0.07254	validation_1-rmse:0.08812
[629]	validation_0-rmse:0.07247	validation_1-rmse:0.08807
[630]	validation_0-rmse:0.07240	validation_1-rmse:0.08804
[631]	validation_0-rmse:0.07235	validation_1-rmse:0.08800
[632]	validation_0-rmse:0.07230	validation_1-rmse:0.08798
[633]	validation_0-rmse:0.07226	validation_1-rmse:0.08794
[634]	validation_0-rmse:0.07222	validation_1-rmse:0.08792
[635]	validation_0-rmse:0.07217	validation_1-rmse:0.08790
[636]	validation_0-rmse:0.07209	validation_1-rmse:0.08784
[637]	validation_0-rmse:0.07203	validation_1-rmse:0.08778
[638]	validation_0-rmse:0.07187	validation_1-rmse:0.08764
[639]	validation_0-rmse:0.07182	validation_1-rmse:0.08759
[640]	validation_0-rmse:0.07175	validation_1-rmse:0.08753
[641]	validation_0-rmse:0.07165	validation_1-rmse:0.08744
[642]	validation_0-rmse:0.07160	validation_1-rmse:0.08740
[643]	validation_0-rmse:0.07152	validation_1-rmse:0.08731
[644]	validation_0-rmse:0.07145	validation_1-rmse:0.08726
[645]	validation_0-rmse:0.07140	validation_1-rmse:0.08722
[646]	validation_0-rmse:0.07133	validation_1-rmse:0.08718
[647]	validation_0-rmse:0.07126	validation_1-rmse:0.08712
[648]	validation_0-rmse:0.07119	validation_1-rmse:0.08706
[649]	validation_0-rmse:0.07111	validation_1-rmse:0.08698
[650]	validation_0-rmse:0.07106	validation_1-rmse:0.08697
[651]	validation_0-rmse:0.07102	validation_1-rmse:0.08693
[652]	validation_0-rmse:0.07099	validation_1-rmse:0.08692
[653]	validation_0-rmse:0.07093	validation_1-rmse:0.08688
[654]	validation_0-rmse:0.07089	validation_1-rmse:0.08685
[655]	validation_0-rmse:0.07085	validation_1-rmse:0.08682
[656]	validation_0-rmse:0.07076	validation_1-rmse:0.08676
[657]	validation_0-rmse:0.07070	validation_1-rmse:0.08672
[658]	validation_0-rmse:0.07069	validation_1-rmse:0.08672
[659]	validation_0-rmse:0.07066	validation_1-rmse:0.08670
[660]	validation_0-rmse:0.07055	validation_1-rmse:0.08660
[661]	validation_0-rmse:0.07050	validation_1-rmse:0.08657
[662]	validation_0-rmse:0.07045	validation_1-rmse:0.08653
[663]	validation_0-rmse:0.07040	validation_1-rmse:0.08650
[664]	validation_0-rmse:0.07036	validation_1-rmse:0.08647
[665]	validation_0-rmse:0.07033	validation_1-rmse:0.08645
[666]	validation_0-rmse:0.07029	validation_1-rmse:0.08643
[667]	validation_0-rmse:0.07022	validation_1-rmse:0.08636
[668]	validation_0-rmse:0.07018	validation_1-rmse:0.08635
[669]	validation_0-rmse:0.07012	validation_1-rmse:0.08630
[670]	validation_0-rmse:0.07006	validation_1-rmse:0.08624
[671]	validation_0-rmse:0.06998	validation_1-rmse:0.08616
[672]	validation_0-rmse:0.06991	validation_1-rmse:0.08612
[673]	validation_0-rmse:0.06988	validation_1-rmse:0.08610
[674]	validation_0-rmse:0.06983	validation_1-rmse:0.08604
[675]	validation_0-rmse:0.06976	validation_1-rmse:0.08599
[676]	validation_0-rmse:0.06970	validation_1-rmse:0.08594
[677]	validation_0-rmse:0.06964	validation_1-rmse:0.08588
[678]	validation_0-rmse:0.06957	validation_1-rmse:0.08583
[679]	validation_0-rmse:0.06951	validation_1-rmse:0.08576
[680]	validation_0-rmse:0.06947	validation_1-rmse:0.08573
[681]	validation_0-rmse:0.06940	validation_1-rmse:0.08568
[682]	validation_0-rmse:0.06934	validation_1-rmse:0.08563
[683]	validation_0-rmse:0.06929	validation_1-rmse:0.08559
[684]	validation_0-rmse:0.06924	validation_1-rmse:0.08555
[685]	validation_0-rmse:0.06922	validation_1-rmse:0.08554
[686]	validation_0-rmse:0.06921	validation_1-rmse:0.08553
[687]	validation_0-rmse:0.06913	validation_1-rmse:0.08546
[688]	validation_0-rmse:0.06903	validation_1-rmse:0.08536
[689]	validation_0-rmse:0.06897	validation_1-rmse:0.08531
[690]	validation_0-rmse:0.06891	validation_1-rmse:0.08528
[691]	validation_0-rmse:0.06884	validation_1-rmse:0.08523
[692]	validation_0-rmse:0.06879	validation_1-rmse:0.08520
[693]	validation_0-rmse:0.06875	validation_1-rmse:0.08517
[694]	validation_0-rmse:0.06867	validation_1-rmse:0.08509
[695]	validation_0-rmse:0.06861	validation_1-rmse:0.08503
[696]	validation_0-rmse:0.06857	validation_1-rmse:0.08501
[697]	validation_0-rmse:0.06853	validation_1-rmse:0.08498
[698]	validation_0-rmse:0.06851	validation_1-rmse:0.08496
[699]	validation_0-rmse:0.06846	validation_1-rmse:0.08494
[700]	validation_0-rmse:0.06839	validation_1-rmse:0.08487
[701]	validation_0-rmse:0.06835	validation_1-rmse:0.08485
[702]	validation_0-rmse:0.06830	validation_1-rmse:0.08482
[703]	validation_0-rmse:0.06826	validation_1-rmse:0.08479
[704]	validation_0-rmse:0.06822	validation_1-rmse:0.08476
[705]	validation_0-rmse:0.06818	validation_1-rmse:0.08472
[706]	validation_0-rmse:0.06814	validation_1-rmse:0.08470
[707]	validation_0-rmse:0.06809	validation_1-rmse:0.08466
[708]	validation_0-rmse:0.06802	validation_1-rmse:0.08460
[709]	validation_0-rmse:0.06795	validation_1-rmse:0.08454
[710]	validation_0-rmse:0.06792	validation_1-rmse:0.08451
[711]	validation_0-rmse:0.06788	validation_1-rmse:0.08448
[712]	validation_0-rmse:0.06785	validation_1-rmse:0.08445
[713]	validation_0-rmse:0.06781	validation_1-rmse:0.08442
[714]	validation_0-rmse:0.06777	validation_1-rmse:0.08440
[715]	validation_0-rmse:0.06775	validation_1-rmse:0.08438
[716]	validation_0-rmse:0.06768	validation_1-rmse:0.08432
[717]	validation_0-rmse:0.06762	validation_1-rmse:0.08426
[718]	validation_0-rmse:0.06759	validation_1-rmse:0.08425
[719]	validation_0-rmse:0.06754	validation_1-rmse:0.08421
[720]	validation_0-rmse:0.06748	validation_1-rmse:0.08418
[721]	validation_0-rmse:0.06744	validation_1-rmse:0.08414
[722]	validation_0-rmse:0.06740	validation_1-rmse:0.08410
[723]	validation_0-rmse:0.06736	validation_1-rmse:0.08408
[724]	validation_0-rmse:0.06732	validation_1-rmse:0.08405
[725]	validation_0-rmse:0.06728	validation_1-rmse:0.08402
[726]	validation_0-rmse:0.06725	validation_1-rmse:0.08400
[727]	validation_0-rmse:0.06721	validation_1-rmse:0.08397
[728]	validation_0-rmse:0.06718	validation_1-rmse:0.08395
[729]	validation_0-rmse:0.06714	validation_1-rmse:0.08393
[730]	validation_0-rmse:0.06710	validation_1-rmse:0.08390
[731]	validation_0-rmse:0.06705	validation_1-rmse:0.08386
[732]	validation_0-rmse:0.06696	validation_1-rmse:0.08378
[733]	validation_0-rmse:0.06693	validation_1-rmse:0.08377
[734]	validation_0-rmse:0.06688	validation_1-rmse:0.08373
[735]	validation_0-rmse:0.06685	validation_1-rmse:0.08370
[736]	validation_0-rmse:0.06680	validation_1-rmse:0.08367
[737]	validation_0-rmse:0.06675	validation_1-rmse:0.08363
[738]	validation_0-rmse:0.06671	validation_1-rmse:0.08362
[739]	validation_0-rmse:0.06667	validation_1-rmse:0.08357
[740]	validation_0-rmse:0.06665	validation_1-rmse:0.08357
[741]	validation_0-rmse:0.06662	validation_1-rmse:0.08355
[742]	validation_0-rmse:0.06656	validation_1-rmse:0.08352
[743]	validation_0-rmse:0.06654	validation_1-rmse:0.08351
[744]	validation_0-rmse:0.06651	validation_1-rmse:0.08350
[745]	validation_0-rmse:0.06646	validation_1-rmse:0.08345
[746]	validation_0-rmse:0.06643	validation_1-rmse:0.08344
[747]	validation_0-rmse:0.06641	validation_1-rmse:0.08343
[748]	validation_0-rmse:0.06635	validation_1-rmse:0.08338
[749]	validation_0-rmse:0.06629	validation_1-rmse:0.08335
[750]	validation_0-rmse:0.06624	validation_1-rmse:0.08332
[751]	validation_0-rmse:0.06618	validation_1-rmse:0.08326
[752]	validation_0-rmse:0.06614	validation_1-rmse:0.08323
[753]	validation_0-rmse:0.06609	validation_1-rmse:0.08319
[754]	validation_0-rmse:0.06603	validation_1-rmse:0.08316
[755]	validation_0-rmse:0.06601	validation_1-rmse:0.08315
[756]	validation_0-rmse:0.06599	validation_1-rmse:0.08313
[757]	validation_0-rmse:0.06591	validation_1-rmse:0.08308
[758]	validation_0-rmse:0.06590	validation_1-rmse:0.08307
[759]	validation_0-rmse:0.06588	validation_1-rmse:0.08305
[760]	validation_0-rmse:0.06585	validation_1-rmse:0.08303
[761]	validation_0-rmse:0.06581	validation_1-rmse:0.08300
[762]	validation_0-rmse:0.06578	validation_1-rmse:0.08297
[763]	validation_0-rmse:0.06574	validation_1-rmse:0.08294
[764]	validation_0-rmse:0.06570	validation_1-rmse:0.08291
[765]	validation_0-rmse:0.06566	validation_1-rmse:0.08288
[766]	validation_0-rmse:0.06563	validation_1-rmse:0.08286
[767]	validation_0-rmse:0.06556	validation_1-rmse:0.08280
[768]	validation_0-rmse:0.06551	validation_1-rmse:0.08275
[769]	validation_0-rmse:0.06548	validation_1-rmse:0.08273
[770]	validation_0-rmse:0.06544	validation_1-rmse:0.08271
[771]	validation_0-rmse:0.06538	validation_1-rmse:0.08265
[772]	validation_0-rmse:0.06535	validation_1-rmse:0.08262
[773]	validation_0-rmse:0.06531	validation_1-rmse:0.08260
[774]	validation_0-rmse:0.06526	validation_1-rmse:0.08254
[775]	validation_0-rmse:0.06521	validation_1-rmse:0.08251
[776]	validation_0-rmse:0.06519	validation_1-rmse:0.08250
[777]	validation_0-rmse:0.06513	validation_1-rmse:0.08245
[778]	validation_0-rmse:0.06507	validation_1-rmse:0.08241
[779]	validation_0-rmse:0.06499	validation_1-rmse:0.08235
[780]	validation_0-rmse:0.06494	validation_1-rmse:0.08232
[781]	validation_0-rmse:0.06488	validation_1-rmse:0.08227
[782]	validation_0-rmse:0.06487	validation_1-rmse:0.08227
[783]	validation_0-rmse:0.06483	validation_1-rmse:0.08224
[784]	validation_0-rmse:0.06481	validation_1-rmse:0.08223
[785]	validation_0-rmse:0.06475	validation_1-rmse:0.08218
[786]	validation_0-rmse:0.06472	validation_1-rmse:0.08215
[787]	validation_0-rmse:0.06470	validation_1-rmse:0.08214
[788]	validation_0-rmse:0.06467	validation_1-rmse:0.08211
[789]	validation_0-rmse:0.06465	validation_1-rmse:0.08209
[790]	validation_0-rmse:0.06463	validation_1-rmse:0.08208
[791]	validation_0-rmse:0.06459	validation_1-rmse:0.08204
[792]	validation_0-rmse:0.06452	validation_1-rmse:0.08198
[793]	validation_0-rmse:0.06449	validation_1-rmse:0.08195
[794]	validation_0-rmse:0.06447	validation_1-rmse:0.08193
[795]	validation_0-rmse:0.06442	validation_1-rmse:0.08190
[796]	validation_0-rmse:0.06435	validation_1-rmse:0.08187
[797]	validation_0-rmse:0.06429	validation_1-rmse:0.08182
[798]	validation_0-rmse:0.06427	validation_1-rmse:0.08180
[799]	validation_0-rmse:0.06423	validation_1-rmse:0.08177
[800]	validation_0-rmse:0.06416	validation_1-rmse:0.08172
[801]	validation_0-rmse:0.06411	validation_1-rmse:0.08166
[802]	validation_0-rmse:0.06405	validation_1-rmse:0.08162
[803]	validation_0-rmse:0.06401	validation_1-rmse:0.08160
[804]	validation_0-rmse:0.06395	validation_1-rmse:0.08154
[805]	validation_0-rmse:0.06385	validation_1-rmse:0.08146
[806]	validation_0-rmse:0.06380	validation_1-rmse:0.08142
[807]	validation_0-rmse:0.06374	validation_1-rmse:0.08138
[808]	validation_0-rmse:0.06368	validation_1-rmse:0.08133
[809]	validation_0-rmse:0.06366	validation_1-rmse:0.08132
[810]	validation_0-rmse:0.06362	validation_1-rmse:0.08129
[811]	validation_0-rmse:0.06359	validation_1-rmse:0.08128
[812]	validation_0-rmse:0.06358	validation_1-rmse:0.08127
[813]	validation_0-rmse:0.06356	validation_1-rmse:0.08126
[814]	validation_0-rmse:0.06350	validation_1-rmse:0.08122
[815]	validation_0-rmse:0.06345	validation_1-rmse:0.08117
[816]	validation_0-rmse:0.06336	validation_1-rmse:0.08109
[817]	validation_0-rmse:0.06332	validation_1-rmse:0.08106
[818]	validation_0-rmse:0.06326	validation_1-rmse:0.08100
[819]	validation_0-rmse:0.06321	validation_1-rmse:0.08095
[820]	validation_0-rmse:0.06318	validation_1-rmse:0.08093
[821]	validation_0-rmse:0.06312	validation_1-rmse:0.08090
[822]	validation_0-rmse:0.06310	validation_1-rmse:0.08089
[823]	validation_0-rmse:0.06308	validation_1-rmse:0.08088
[824]	validation_0-rmse:0.06305	validation_1-rmse:0.08086
[825]	validation_0-rmse:0.06304	validation_1-rmse:0.08085
[826]	validation_0-rmse:0.06298	validation_1-rmse:0.08080
[827]	validation_0-rmse:0.06296	validation_1-rmse:0.08078
[828]	validation_0-rmse:0.06291	validation_1-rmse:0.08075
[829]	validation_0-rmse:0.06287	validation_1-rmse:0.08072
[830]	validation_0-rmse:0.06286	validation_1-rmse:0.08071
[831]	validation_0-rmse:0.06279	validation_1-rmse:0.08065
[832]	validation_0-rmse:0.06274	validation_1-rmse:0.08061
[833]	validation_0-rmse:0.06269	validation_1-rmse:0.08058
[834]	validation_0-rmse:0.06263	validation_1-rmse:0.08054
[835]	validation_0-rmse:0.06258	validation_1-rmse:0.08050
[836]	validation_0-rmse:0.06254	validation_1-rmse:0.08047
[837]	validation_0-rmse:0.06250	validation_1-rmse:0.08043
[838]	validation_0-rmse:0.06246	validation_1-rmse:0.08041
[839]	validation_0-rmse:0.06242	validation_1-rmse:0.08039
[840]	validation_0-rmse:0.06238	validation_1-rmse:0.08036
[841]	validation_0-rmse:0.06237	validation_1-rmse:0.08036
[842]	validation_0-rmse:0.06234	validation_1-rmse:0.08034
[843]	validation_0-rmse:0.06230	validation_1-rmse:0.08032
[844]	validation_0-rmse:0.06225	validation_1-rmse:0.08028
[845]	validation_0-rmse:0.06223	validation_1-rmse:0.08026
[846]	validation_0-rmse:0.06215	validation_1-rmse:0.08019
[847]	validation_0-rmse:0.06212	validation_1-rmse:0.08018
[848]	validation_0-rmse:0.06206	validation_1-rmse:0.08014
[849]	validation_0-rmse:0.06203	validation_1-rmse:0.08013
[850]	validation_0-rmse:0.06200	validation_1-rmse:0.08011
[851]	validation_0-rmse:0.06194	validation_1-rmse:0.08007
[852]	validation_0-rmse:0.06190	validation_1-rmse:0.08005
[853]	validation_0-rmse:0.06183	validation_1-rmse:0.07998
[854]	validation_0-rmse:0.06181	validation_1-rmse:0.07997
[855]	validation_0-rmse:0.06179	validation_1-rmse:0.07996
[856]	validation_0-rmse:0.06172	validation_1-rmse:0.07991
[857]	validation_0-rmse:0.06167	validation_1-rmse:0.07987
[858]	validation_0-rmse:0.06165	validation_1-rmse:0.07986
[859]	validation_0-rmse:0.06161	validation_1-rmse:0.07984
[860]	validation_0-rmse:0.06154	validation_1-rmse:0.07978
[861]	validation_0-rmse:0.06147	validation_1-rmse:0.07971
[862]	validation_0-rmse:0.06143	validation_1-rmse:0.07969
[863]	validation_0-rmse:0.06139	validation_1-rmse:0.07966
[864]	validation_0-rmse:0.06138	validation_1-rmse:0.07965
[865]	validation_0-rmse:0.06135	validation_1-rmse:0.07963
[866]	validation_0-rmse:0.06132	validation_1-rmse:0.07961
[867]	validation_0-rmse:0.06128	validation_1-rmse:0.07958
[868]	validation_0-rmse:0.06123	validation_1-rmse:0.07954
[869]	validation_0-rmse:0.06120	validation_1-rmse:0.07952
[870]	validation_0-rmse:0.06115	validation_1-rmse:0.07948
[871]	validation_0-rmse:0.06109	validation_1-rmse:0.07943
[872]	validation_0-rmse:0.06104	validation_1-rmse:0.07938
[873]	validation_0-rmse:0.06100	validation_1-rmse:0.07936
[874]	validation_0-rmse:0.06096	validation_1-rmse:0.07933
[875]	validation_0-rmse:0.06095	validation_1-rmse:0.07933
[876]	validation_0-rmse:0.06093	validation_1-rmse:0.07932
[877]	validation_0-rmse:0.06092	validation_1-rmse:0.07932
[878]	validation_0-rmse:0.06085	validation_1-rmse:0.07926
[879]	validation_0-rmse:0.06082	validation_1-rmse:0.07924
[880]	validation_0-rmse:0.06079	validation_1-rmse:0.07922
[881]	validation_0-rmse:0.06074	validation_1-rmse:0.07917
[882]	validation_0-rmse:0.06069	validation_1-rmse:0.07913
[883]	validation_0-rmse:0.06067	validation_1-rmse:0.07911
[884]	validation_0-rmse:0.06063	validation_1-rmse:0.07908
[885]	validation_0-rmse:0.06058	validation_1-rmse:0.07904
[886]	validation_0-rmse:0.06054	validation_1-rmse:0.07900
[887]	validation_0-rmse:0.06050	validation_1-rmse:0.07898
[888]	validation_0-rmse:0.06045	validation_1-rmse:0.07894
[889]	validation_0-rmse:0.06043	validation_1-rmse:0.07892
[890]	validation_0-rmse:0.06039	validation_1-rmse:0.07890
[891]	validation_0-rmse:0.06034	validation_1-rmse:0.07887
[892]	validation_0-rmse:0.06031	validation_1-rmse:0.07884
[893]	validation_0-rmse:0.06027	validation_1-rmse:0.07881
[894]	validation_0-rmse:0.06022	validation_1-rmse:0.07878
[895]	validation_0-rmse:0.06020	validation_1-rmse:0.07877
[896]	validation_0-rmse:0.06017	validation_1-rmse:0.07875
[897]	validation_0-rmse:0.06015	validation_1-rmse:0.07873
[898]	validation_0-rmse:0.06010	validation_1-rmse:0.07869
[899]	validation_0-rmse:0.06006	validation_1-rmse:0.07866
[900]	validation_0-rmse:0.06001	validation_1-rmse:0.07862
[901]	validation_0-rmse:0.05999	validation_1-rmse:0.07860
[902]	validation_0-rmse:0.05998	validation_1-rmse:0.07860
[903]	validation_0-rmse:0.05993	validation_1-rmse:0.07856
[904]	validation_0-rmse:0.05991	validation_1-rmse:0.07855
[905]	validation_0-rmse:0.05988	validation_1-rmse:0.07853
[906]	validation_0-rmse:0.05980	validation_1-rmse:0.07846
[907]	validation_0-rmse:0.05979	validation_1-rmse:0.07846
[908]	validation_0-rmse:0.05974	validation_1-rmse:0.07842
[909]	validation_0-rmse:0.05968	validation_1-rmse:0.07838
[910]	validation_0-rmse:0.05966	validation_1-rmse:0.07836
[911]	validation_0-rmse:0.05963	validation_1-rmse:0.07835
[912]	validation_0-rmse:0.05959	validation_1-rmse:0.07831
[913]	validation_0-rmse:0.05956	validation_1-rmse:0.07830
[914]	validation_0-rmse:0.05953	validation_1-rmse:0.07827
[915]	validation_0-rmse:0.05949	validation_1-rmse:0.07824
[916]	validation_0-rmse:0.05945	validation_1-rmse:0.07821
[917]	validation_0-rmse:0.05941	validation_1-rmse:0.07818
[918]	validation_0-rmse:0.05940	validation_1-rmse:0.07817
[919]	validation_0-rmse:0.05937	validation_1-rmse:0.07816
[920]	validation_0-rmse:0.05936	validation_1-rmse:0.07815
[921]	validation_0-rmse:0.05933	validation_1-rmse:0.07814
[922]	validation_0-rmse:0.05927	validation_1-rmse:0.07809
[923]	validation_0-rmse:0.05924	validation_1-rmse:0.07807
[924]	validation_0-rmse:0.05923	validation_1-rmse:0.07806
[925]	validation_0-rmse:0.05920	validation_1-rmse:0.07805
[926]	validation_0-rmse:0.05914	validation_1-rmse:0.07799
[927]	validation_0-rmse:0.05911	validation_1-rmse:0.07798
[928]	validation_0-rmse:0.05907	validation_1-rmse:0.07795
[929]	validation_0-rmse:0.05904	validation_1-rmse:0.07793
[930]	validation_0-rmse:0.05900	validation_1-rmse:0.07790
[931]	validation_0-rmse:0.05895	validation_1-rmse:0.07786
[932]	validation_0-rmse:0.05890	validation_1-rmse:0.07782
[933]	validation_0-rmse:0.05887	validation_1-rmse:0.07780
[934]	validation_0-rmse:0.05881	validation_1-rmse:0.07774
[935]	validation_0-rmse:0.05877	validation_1-rmse:0.07772
[936]	validation_0-rmse:0.05874	validation_1-rmse:0.07769
[937]	validation_0-rmse:0.05872	validation_1-rmse:0.07768
[938]	validation_0-rmse:0.05869	validation_1-rmse:0.07767
[939]	validation_0-rmse:0.05869	validation_1-rmse:0.07766
[940]	validation_0-rmse:0.05864	validation_1-rmse:0.07763
[941]	validation_0-rmse:0.05859	validation_1-rmse:0.07759
[942]	validation_0-rmse:0.05855	validation_1-rmse:0.07758
[943]	validation_0-rmse:0.05851	validation_1-rmse:0.07755
[944]	validation_0-rmse:0.05848	validation_1-rmse:0.07754
[945]	validation_0-rmse:0.05845	validation_1-rmse:0.07752
[946]	validation_0-rmse:0.05839	validation_1-rmse:0.07749
[947]	validation_0-rmse:0.05836	validation_1-rmse:0.07747
[948]	validation_0-rmse:0.05832	validation_1-rmse:0.07744
[949]	validation_0-rmse:0.05829	validation_1-rmse:0.07742
[950]	validation_0-rmse:0.05826	validation_1-rmse:0.07740
[951]	validation_0-rmse:0.05824	validation_1-rmse:0.07739
[952]	validation_0-rmse:0.05821	validation_1-rmse:0.07737
[953]	validation_0-rmse:0.05817	validation_1-rmse:0.07734
[954]	validation_0-rmse:0.05815	validation_1-rmse:0.07733
[955]	validation_0-rmse:0.05811	validation_1-rmse:0.07731
[956]	validation_0-rmse:0.05806	validation_1-rmse:0.07726
[957]	validation_0-rmse:0.05801	validation_1-rmse:0.07723
[958]	validation_0-rmse:0.05800	validation_1-rmse:0.07723
[959]	validation_0-rmse:0.05798	validation_1-rmse:0.07721
[960]	validation_0-rmse:0.05794	validation_1-rmse:0.07718
[961]	validation_0-rmse:0.05791	validation_1-rmse:0.07716
[962]	validation_0-rmse:0.05790	validation_1-rmse:0.07716
[963]	validation_0-rmse:0.05785	validation_1-rmse:0.07712
[964]	validation_0-rmse:0.05779	validation_1-rmse:0.07707
[965]	validation_0-rmse:0.05778	validation_1-rmse:0.07706
[966]	validation_0-rmse:0.05772	validation_1-rmse:0.07700
[967]	validation_0-rmse:0.05770	validation_1-rmse:0.07699
[968]	validation_0-rmse:0.05765	validation_1-rmse:0.07695
[969]	validation_0-rmse:0.05762	validation_1-rmse:0.07693
[970]	validation_0-rmse:0.05759	validation_1-rmse:0.07691
[971]	validation_0-rmse:0.05757	validation_1-rmse:0.07689
[972]	validation_0-rmse:0.05754	validation_1-rmse:0.07686
[973]	validation_0-rmse:0.05752	validation_1-rmse:0.07685
[974]	validation_0-rmse:0.05752	validation_1-rmse:0.07684
[975]	validation_0-rmse:0.05747	validation_1-rmse:0.07680
[976]	validation_0-rmse:0.05745	validation_1-rmse:0.07680
[977]	validation_0-rmse:0.05742	validation_1-rmse:0.07677
[978]	validation_0-rmse:0.05738	validation_1-rmse:0.07676
[979]	validation_0-rmse:0.05734	validation_1-rmse:0.07673
[980]	validation_0-rmse:0.05732	validation_1-rmse:0.07672
[981]	validation_0-rmse:0.05728	validation_1-rmse:0.07670
[982]	validation_0-rmse:0.05726	validation_1-rmse:0.07669
[983]	validation_0-rmse:0.05726	validation_1-rmse:0.07669
[984]	validation_0-rmse:0.05723	validation_1-rmse:0.07666
[985]	validation_0-rmse:0.05719	validation_1-rmse:0.07664
[986]	validation_0-rmse:0.05716	validation_1-rmse:0.07662
[987]	validation_0-rmse:0.05713	validation_1-rmse:0.07660
[988]	validation_0-rmse:0.05709	validation_1-rmse:0.07657
[989]	validation_0-rmse:0.05706	validation_1-rmse:0.07656
[990]	validation_0-rmse:0.05703	validation_1-rmse:0.07653
[991]	validation_0-rmse:0.05700	validation_1-rmse:0.07652
[992]	validation_0-rmse:0.05696	validation_1-rmse:0.07648
[993]	validation_0-rmse:0.05693	validation_1-rmse:0.07646
[994]	validation_0-rmse:0.05690	validation_1-rmse:0.07646
[995]	validation_0-rmse:0.05686	validation_1-rmse:0.07642
[996]	validation_0-rmse:0.05683	validation_1-rmse:0.07640
[997]	validation_0-rmse:0.05681	validation_1-rmse:0.07639
[998]	validation_0-rmse:0.05677	validation_1-rmse:0.07637
[999]	validation_0-rmse:0.05674	validation_1-rmse:0.07635
>>> Using model to predict target TS_GF1_0.4_1 in unseen test data ...
>>> Using model to calculate permutation importance based on unseen test data ...
>>> Calculating prediction scores based on predicting unseen test data of TS_GF1_0.4_1 ...
>>> Collecting results, details about training and testing can be accessed by calling .report_traintest().
>>> Done.

================================
MODEL TRAINING & TESTING RESULTS
================================

## DATA
  > target: TS_GF1_0.4_1
  > features: 32 ['TS_GF1_0.04_1_gfXG', 'TS_GF1_0.15_1_gfXG', '.TS_GF1_0.04_1_gfXG-10', '.TS_GF1_0.04_1_gfXG-9', '.TS_GF1_0.04_1_gfXG-8', '.TS_GF1_0.04_1_gfXG-7', '.TS_GF1_0.04_1_gfXG-6', '.TS_GF1_0.04_1_gfXG-5', '.TS_GF1_0.04_1_gfXG-4', '.TS_GF1_0.04_1_gfXG-3', '.TS_GF1_0.04_1_gfXG-2', '.TS_GF1_0.04_1_gfXG-1', '.TS_GF1_0.15_1_gfXG-10', '.TS_GF1_0.15_1_gfXG-9', '.TS_GF1_0.15_1_gfXG-8', '.TS_GF1_0.15_1_gfXG-7', '.TS_GF1_0.15_1_gfXG-6', '.TS_GF1_0.15_1_gfXG-5', '.TS_GF1_0.15_1_gfXG-4', '.TS_GF1_0.15_1_gfXG-3', '.TS_GF1_0.15_1_gfXG-2', '.TS_GF1_0.15_1_gfXG-1', '.YEAR', '.SEASON', '.MONTH', '.WEEK', '.DOY', '.HOUR', '.YEARMONTH', '.YEARDOY', '.YEARWEEK', '.RECORDNUMBER']
  > 350640 records (with missing)
  > 331945 available records for target and all features (no missing values)
  > training on 248958 records (75.0%) of 248958 features between 2005-09-09 10:15:00 and 2024-12-31 23:15:00
  > testing on 82987 unseen records (25.0%) of TS_GF1_0.4_1 between 2005-09-09 09:45:00 and 2024-12-31 23:45:00

## MODEL
  > the model was trained on training data (248958 records)
  > the model was tested on test data (82987 values)
  > estimator:  XGBRegressor(base_score=None, booster=None, callbacks=None,
             colsample_bylevel=None, colsample_bynode=None,
             colsample_bytree=None, device=None, early_stopping_rounds=50,
             enable_categorical=False, eval_metric=None, feature_types=None,
             gamma=None, grow_policy=None, importance_type=None,
             interaction_constraints=None, learning_rate=None, max_bin=None,
             max_cat_threshold=None, max_cat_to_onehot=None,
             max_delta_step=None, max_depth=None, max_leaves=None,
             min_child_weight=None, missing=nan, monotone_constraints=None,
             multi_strategy=None, n_estimators=1000, n_jobs=-1,
             num_parallel_tree=None, random_state=42, ...)
  > parameters:  {'objective': 'reg:squarederror', 'base_score': None, 'booster': None, 'callbacks': None, 'colsample_bylevel': None, 'colsample_bynode': None, 'colsample_bytree': None, 'device': None, 'early_stopping_rounds': 50, 'enable_categorical': False, 'eval_metric': None, 'feature_types': None, 'gamma': None, 'grow_policy': None, 'importance_type': None, 'interaction_constraints': None, 'learning_rate': None, 'max_bin': None, 'max_cat_threshold': None, 'max_cat_to_onehot': None, 'max_delta_step': None, 'max_depth': None, 'max_leaves': None, 'min_child_weight': None, 'missing': nan, 'monotone_constraints': None, 'multi_strategy': None, 'n_estimators': 1000, 'n_jobs': -1, 'num_parallel_tree': None, 'random_state': 42, 'reg_alpha': None, 'reg_lambda': None, 'sampling_method': None, 'scale_pos_weight': None, 'subsample': None, 'tree_method': None, 'validate_parameters': None, 'verbosity': None}
  > number of features used in model:  32
  > names of features used in model:  ['TS_GF1_0.04_1_gfXG', 'TS_GF1_0.15_1_gfXG', '.TS_GF1_0.04_1_gfXG-10', '.TS_GF1_0.04_1_gfXG-9', '.TS_GF1_0.04_1_gfXG-8', '.TS_GF1_0.04_1_gfXG-7', '.TS_GF1_0.04_1_gfXG-6', '.TS_GF1_0.04_1_gfXG-5', '.TS_GF1_0.04_1_gfXG-4', '.TS_GF1_0.04_1_gfXG-3', '.TS_GF1_0.04_1_gfXG-2', '.TS_GF1_0.04_1_gfXG-1', '.TS_GF1_0.15_1_gfXG-10', '.TS_GF1_0.15_1_gfXG-9', '.TS_GF1_0.15_1_gfXG-8', '.TS_GF1_0.15_1_gfXG-7', '.TS_GF1_0.15_1_gfXG-6', '.TS_GF1_0.15_1_gfXG-5', '.TS_GF1_0.15_1_gfXG-4', '.TS_GF1_0.15_1_gfXG-3', '.TS_GF1_0.15_1_gfXG-2', '.TS_GF1_0.15_1_gfXG-1', '.YEAR', '.SEASON', '.MONTH', '.WEEK', '.DOY', '.HOUR', '.YEARMONTH', '.YEARDOY', '.YEARWEEK', '.RECORDNUMBER']

## FEATURE IMPORTANCES
  > feature importances were calculated based on unseen test data of TS_GF1_0.4_1 (82987 records).
  > feature importances are showing permutation importances from 10 repeats

                        PERM_IMPORTANCE       PERM_SD
.TS_GF1_0.15_1_gfXG-10         0.910924  4.191212e-03
TS_GF1_0.15_1_gfXG             0.117828  5.271950e-04
.TS_GF1_0.04_1_gfXG-10         0.051647  1.730533e-04
.DOY                           0.037540  1.830625e-04
.TS_GF1_0.15_1_gfXG-1          0.012493  5.285167e-05
.YEARMONTH                     0.006508  3.958246e-05
.YEARDOY                       0.005243  3.074491e-05
.WEEK                          0.003683  2.900322e-05
.TS_GF1_0.15_1_gfXG-3          0.002831  1.271613e-05
.TS_GF1_0.15_1_gfXG-2          0.002777  1.054393e-05
.RECORDNUMBER                  0.002218  1.132744e-05
.TS_GF1_0.15_1_gfXG-6          0.002186  1.055718e-05
.TS_GF1_0.15_1_gfXG-9          0.002062  1.302195e-05
.TS_GF1_0.15_1_gfXG-8          0.001934  8.811151e-06
.TS_GF1_0.15_1_gfXG-5          0.001931  1.072211e-05
.YEARWEEK                      0.001765  7.576100e-06
.TS_GF1_0.15_1_gfXG-7          0.001140  6.361922e-06
.TS_GF1_0.15_1_gfXG-4          0.000874  5.121036e-06
TS_GF1_0.04_1_gfXG             0.000868  4.284329e-06
.HOUR                          0.000824  4.861549e-06
.YEAR                          0.000561  2.490840e-06
.SEASON                        0.000443  4.675602e-06
.MONTH                         0.000366  2.901963e-06
.TS_GF1_0.04_1_gfXG-9          0.000239  1.698292e-06
.TS_GF1_0.04_1_gfXG-3          0.000204  1.436919e-06
.TS_GF1_0.04_1_gfXG-6          0.000183  1.244100e-06
.TS_GF1_0.04_1_gfXG-8          0.000160  9.941143e-07
.TS_GF1_0.04_1_gfXG-7          0.000129  9.349745e-07
.TS_GF1_0.04_1_gfXG-5          0.000129  1.047667e-06
.TS_GF1_0.04_1_gfXG-1          0.000112  1.217784e-06
.TS_GF1_0.04_1_gfXG-4          0.000112  4.794149e-07
.TS_GF1_0.04_1_gfXG-2          0.000075  4.830482e-07


## MODEL SCORES
  All scores were calculated based on unseen test data (82987 records).
  > MAE:  0.05732237380665449 (mean absolute error)
  > MedAE:  0.04440019134521478 (median absolute error)
  > MSE:  0.005829624050677381 (mean squared error)
  > RMSE:  0.07635197476606208 (root mean squared error)
  > MAXE:  1.4030933332714852 (max error)
  > MAPE:  0.006 (mean absolute percentage error)
  > R2:  0.9998051035936195


Gap-filling using final model ...
>>> Using final model on all data to predict target TS_GF1_0.4_1 ...
>>> Using final model on all data to calculate permutation importance ...
>>> Calculating prediction scores based on all data predicting TS_GF1_0.4_1 ...
>>> Predicting target TS_GF1_0.4_1 where all features are available ... predicted 350640 records.
>>> Collecting results for final model ...
>>> Filling 18695 missing records in target with predictions from final model ...
>>> Storing gap-filled time series in variable TS_GF1_0.4_1_gfXG ...
>>> Restoring original timestamp in results ...
>>> Combining predictions from full model and fallback model ...

===================
GAP-FILLING RESULTS
===================

Model scores and feature importances were calculated from high-quality predicted targets (18695 values, TS_GF1_0.4_1_gfXG where flag=1) in comparison to observed targets (331945 values, TS_GF1_0.4_1).

## TARGET
- first timestamp:  2005-01-01 00:15:00
- last timestamp:  2024-12-31 23:45:00
- potential number of values: 350640 values)
- target column (observed):  TS_GF1_0.4_1
- missing records (observed):  18695 (cross-check from flag: 18695)
- target column (gap-filled):  TS_GF1_0.4_1_gfXG  (350640 values)
- missing records (gap-filled):  0
- gap-filling flag: FLAG_TS_GF1_0.4_1_gfXG_ISFILLED
  > flag 0 ... observed targets (331945 values)
  > flag 1 ... targets gap-filled with high-quality, all features available (18695 values)
  > flag 2 ... targets gap-filled with fallback (0 values)

## FEATURE IMPORTANCES
- names of features used in model:  ['.TS_GF1_0.15_1_gfXG-10', 'TS_GF1_0.15_1_gfXG', '.TS_GF1_0.04_1_gfXG-10', '.DOY', '.TS_GF1_0.15_1_gfXG-1', '.YEARMONTH', '.YEARDOY', '.WEEK', '.TS_GF1_0.15_1_gfXG-3', '.TS_GF1_0.15_1_gfXG-2', '.RECORDNUMBER', '.TS_GF1_0.15_1_gfXG-6', '.TS_GF1_0.15_1_gfXG-9', '.TS_GF1_0.15_1_gfXG-8', '.TS_GF1_0.15_1_gfXG-5', '.YEARWEEK', '.TS_GF1_0.15_1_gfXG-7', 'TS_GF1_0.04_1_gfXG', '.TS_GF1_0.15_1_gfXG-4', '.HOUR', '.YEAR', '.SEASON', '.MONTH', '.TS_GF1_0.04_1_gfXG-9', '.TS_GF1_0.04_1_gfXG-3', '.TS_GF1_0.04_1_gfXG-6', '.TS_GF1_0.04_1_gfXG-8', '.TS_GF1_0.04_1_gfXG-7', '.TS_GF1_0.04_1_gfXG-5', '.TS_GF1_0.04_1_gfXG-4', '.TS_GF1_0.04_1_gfXG-1', '.TS_GF1_0.04_1_gfXG-2']
- number of features used in model:  32
- permutation importances were calculated from 10 repeats.

                        PERM_IMPORTANCE       PERM_SD
.TS_GF1_0.15_1_gfXG-10         0.913582  1.508894e-03
TS_GF1_0.15_1_gfXG             0.117840  1.833860e-04
.TS_GF1_0.04_1_gfXG-10         0.051775  7.082590e-05
.DOY                           0.037550  6.256391e-05
.TS_GF1_0.15_1_gfXG-1          0.012480  1.998030e-05
.YEARMONTH                     0.006545  1.941035e-05
.YEARDOY                       0.005267  1.292859e-05
.WEEK                          0.003640  1.163480e-05
.TS_GF1_0.15_1_gfXG-3          0.002829  5.248056e-06
.TS_GF1_0.15_1_gfXG-2          0.002780  4.424003e-06
.RECORDNUMBER                  0.002217  5.748742e-06
.TS_GF1_0.15_1_gfXG-6          0.002181  4.479564e-06
.TS_GF1_0.15_1_gfXG-9          0.002068  1.783811e-06
.TS_GF1_0.15_1_gfXG-8          0.001937  4.110727e-06
.TS_GF1_0.15_1_gfXG-5          0.001922  3.467003e-06
.YEARWEEK                      0.001755  3.503844e-06
.TS_GF1_0.15_1_gfXG-7          0.001141  1.961019e-06
TS_GF1_0.04_1_gfXG             0.000875  2.966801e-06
.TS_GF1_0.15_1_gfXG-4          0.000874  2.345641e-06
.HOUR                          0.000840  3.242577e-06
.YEAR                          0.000562  1.345561e-06
.SEASON                        0.000438  2.682111e-06
.MONTH                         0.000365  1.564226e-06
.TS_GF1_0.04_1_gfXG-9          0.000241  4.293217e-07
.TS_GF1_0.04_1_gfXG-3          0.000207  1.252524e-06
.TS_GF1_0.04_1_gfXG-6          0.000184  5.899445e-07
.TS_GF1_0.04_1_gfXG-8          0.000161  5.342488e-07
.TS_GF1_0.04_1_gfXG-7          0.000130  3.113134e-07
.TS_GF1_0.04_1_gfXG-5          0.000129  5.911704e-07
.TS_GF1_0.04_1_gfXG-4          0.000113  4.935562e-07
.TS_GF1_0.04_1_gfXG-1          0.000113  3.051964e-07
.TS_GF1_0.04_1_gfXG-2          0.000077  2.370518e-07

## MODEL
The model was trained on a training set with test size 25.00%.
- estimator:  XGBRegressor(base_score=None, booster=None, callbacks=None,
             colsample_bylevel=None, colsample_bynode=None,
             colsample_bytree=None, device=None, early_stopping_rounds=50,
             enable_categorical=False, eval_metric=None, feature_types=None,
             gamma=None, grow_policy=None, importance_type=None,
             interaction_constraints=None, learning_rate=None, max_bin=None,
             max_cat_threshold=None, max_cat_to_onehot=None,
             max_delta_step=None, max_depth=None, max_leaves=None,
             min_child_weight=None, missing=nan, monotone_constraints=None,
             multi_strategy=None, n_estimators=1000, n_jobs=-1,
             num_parallel_tree=None, random_state=42, ...)
- parameters:  {'objective': 'reg:squarederror', 'base_score': None, 'booster': None, 'callbacks': None, 'colsample_bylevel': None, 'colsample_bynode': None, 'colsample_bytree': None, 'device': None, 'early_stopping_rounds': 50, 'enable_categorical': False, 'eval_metric': None, 'feature_types': None, 'gamma': None, 'grow_policy': None, 'importance_type': None, 'interaction_constraints': None, 'learning_rate': None, 'max_bin': None, 'max_cat_threshold': None, 'max_cat_to_onehot': None, 'max_delta_step': None, 'max_depth': None, 'max_leaves': None, 'min_child_weight': None, 'missing': nan, 'monotone_constraints': None, 'multi_strategy': None, 'n_estimators': 1000, 'n_jobs': -1, 'num_parallel_tree': None, 'random_state': 42, 'reg_alpha': None, 'reg_lambda': None, 'sampling_method': None, 'scale_pos_weight': None, 'subsample': None, 'tree_method': None, 'validate_parameters': None, 'verbosity': None}

## MODEL SCORES
- MAE:  0.04700369088303114 (mean absolute error)
- MedAE:  0.03675746517089884 (median absolute error)
- MSE:  0.0038719013488385883 (mean squared error)
- RMSE:  0.06222460404726243 (root mean squared error)
- MAXE:  1.4030933332714852 (max error)
- MAPE:  0.005 (mean absolute percentage error)
- R2:  0.9998707183040998
../../_images/27b748e13d8b1a801d0c024d008db4b7aa14ae424ab6a1cb76683bc98fbb3a52.png ../../_images/002bb4528c5df81d64e88aac722c7f9136c7204de90eeac49b9136e77cb19fe0.png

Plot#

df.plot(x_compat=True, subplots=True, figsize=(20, 14));
../../_images/469586bb819283a0d87296a2b0ed05d571bb7d9670cdc81605b249464a060e0d.png

Save to file#

OUTNAME = "17.3_CH-CHA_meteo10_2005-2024"
filepath = save_parquet(filename=OUTNAME, data=df)
# df.to_csv(f"{OUTNAME}.csv")
Saved file 17.3_CH-CHA_meteo10_2005-2024.parquet (0.406 seconds).

End of notebook.#

dt_string = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
print(f"Finished. {dt_string}")
Finished. 2025-01-21 00:00:53